Guest Lecture

Exploiting Linear Matrix Inequalities In Control Systems Design

Ankush Chakrabarty

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN
Website: Link
October 28, 2015

PURDUE

U N I V E R S I T Y ${ }_{w}$

Motivation

- Jan Willems (1971): "The basic importance of the LMI seems to be largely unappreciated. It would be interesting to see whether or not it can be exploited in computational algorithms..."
- We live in an era of high-performance computing...
- ... so why not use it?
- Exploiting excellent convex solvers
- CVX - Link; Reference: [1]
- YALMIP - Link; Reference: [2]
- Open-source, efficient, robust, seamless MATLAB integration

Question

How do we use efficient, user-friendly solvers to design modern control systems?

Review: Linear/Bilinear Matrix Inequalities

Example 1

$$
\underbrace{A^{\top} P+P A \prec 0}_{\text {linear in } P} \quad \text { or } \quad \underbrace{A^{\top} P A-P \prec 0}_{\text {linear in } P}
$$

Example 2

$$
\left.\left[\begin{array}{cc}
A^{\top} P+P A & P B-C^{\top} \\
B^{\top} P-C & D^{\top} D-I
\end{array}\right] \prec 0\right\} \text { linear in } P
$$

Example 3

$$
\underbrace{A^{\top} P+P A}_{\text {linear in } P}+\underbrace{2 \alpha P}_{?} \prec 0
$$

Scenario I: $\alpha>0$ fixed \Longrightarrow LMI in P Scenario II: $\alpha>0$ variable $\Longrightarrow \mathrm{BMI}$ in P and α

Review: LMIs/BMIs

Example 4

$$
A^{\top} P+P A+2 \alpha P-P B R^{-1} B^{\top} P \prec 0
$$

Q: For fixed $\alpha>0$, is this an LMI in P ?
A: (Sadly) no, it is a Quadratic Matrix Inequality (QMI) in P (look at: $\boldsymbol{P} B R^{-1} B^{\top} \boldsymbol{P}$)

- Q: Why are we hung up on LMIs?
- A: LMIs are tractable! (c.f. [3])

Observer Design

CT-LTI System with measurements:

$$
\begin{array}{|l|}
\hline \dot{x}=A x+B u \\
y=C x
\end{array}
$$

Linear observer:

$$
\dot{\hat{x}}=A \hat{x}+B u+L(y-C \hat{x})
$$

Goal: Design L to ensure global asymptotic stability of error dynamics

- Matrix inequality for observer design:

$$
(A-L C)^{\top} P+P(A-L C) \prec 0, P=P^{\top} \succ 0
$$

Observer Design

$$
A^{\top} P+P A-C^{\top} L^{\top} P-P L C \prec 0, P \succ 0
$$

- To-do: Find L, P
- Problem: BMI in L and P
- Technique \#1: Choose $Y=P L$
- LMIs:

$$
\underbrace{A^{\top} P+P A}_{\text {linear in } P}-\underbrace{C^{\top} Y^{\top}-Y C}_{\text {linear in } Y} \prec 0, P \succ 0
$$

- For robustness of solution, rewrite as

$$
A^{\top} P+P A-C^{\top} Y^{\top}-Y C+2 \alpha P \preceq 0, P \succ 0
$$

with fixed $\alpha>0$

- Get back $L=P^{-1} Y(P \succ 0$, hence invertible $)$

General Structure of CVX Code in MATLAB

cvx_begin sdp quiet
\% sdp: semi-definite programming mode
\% quiet: no display during computing
\% include CVX [variables]
\% for example: variable $P(3,3)$ symmetric
minimize([cost]) \% convex function
subject to
[affine constraints] \% preferably non-strict inequalities
cvx_end
disp(cvx_status) \% solution status

Snippet in CVX

```
cvx_begin sdp
% Variable definition
variable P(n, n) symmetric
variable Y(n, p)
% LMIs
P*sys.A + sys.A'*P - Y*sys.C - sys.C'*Y' + P <= 0
P >= eps*eye(n) % eps is a very small number in MATLAB
cvx_end
sys.L = P\Y; % compute L matrix
```


Simulation

State/Output Feedback Control

LTI System with output feedback control:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x \\
u & =-K y
\end{aligned}
$$

Goal: Design K to ensure global asymptotic stability

- Matrix inequality for output-feedback controller design:

$$
(A-B K C)^{\top} P+P(A-B K C) \prec 0, P \succ 0
$$

- Simpler case: state-feedback $(C=I)$

$$
(A-B K)^{\top} P+P(A-B K) \prec 0, P \succ 0
$$

Simpler Case: State-Feedback Control

$$
(A-B K)^{\top} P+P(A-B K) \prec 0, P \succ 0
$$

- To-do: Find K, P
- Problem: BMI in K and P
- Technique \#2: Congruence transformation with $S \triangleq P^{-1}$ and $Z \triangleq K S$
- New inequalities

$$
S A^{\top}+A S-S K^{\top} B^{\top}-B K S \prec 0
$$

- LMIs:

$$
\underbrace{S A^{\top}+A S}_{\text {linear in } S}-\underbrace{Z^{\top} B^{\top}-B Z}_{\text {linear in } Z} \prec 0, P \succ 0
$$

- Get back $P=S^{-1}, K=Z S^{-1}$

Snippet in CVX

```
cvx_begin sdp
% Variable definition
variable S(n, n) symmetric
variable Z(m, n)
% LMIs
sys.A*S + S*sys.A' - sys.B*Z - Z'*sys.B' <= -eps*eye(n)
S >= eps*eye(n)
cvx_end
sys.K = Z/S; % compute K matrix
```


Simulation

Output-Feedback Control

$$
A^{\top} P+P A-C^{\top} K^{\top} B^{\top} P-P B K C \prec 0, P \succ 0
$$

- To-do: Find K, P
- Problem: BMI in K and P
- Technique \#3: Choose M such that $B M=P B$ and $N \triangleq M K$, c.f. [4]
- New inequalities: $A^{\top} P+P A-C^{\top} K^{\top} M B^{\top}-B M K C \prec 0$
- Linear matrix (in)equalities:

$$
\underbrace{A^{\top} P+P A}_{\text {linear in } P}-\underbrace{C^{\top} N^{\top} B^{\top}-B N C}_{\text {linear in } N} \prec 0, B M=P B, P \succ 0
$$

- Get back $K=M^{-1} N$ (M is invertible if B has full column rank)

Snippet in CVX

Cool fact: CVX/YALMIP can handle equality constraints! cvx_begin sdp quiet \% Variable definition
variable $P(n, n)$ symmetric
variable N(m, p)
variable M(m, m)
\% LMIs
P*sys.A + sys.A'*P - sys.B*N*sys.C ...

- sys.C'*N'*sys.B' <= -eps*eye(n)
sys. $\mathrm{B} * \mathrm{M}=\mathrm{P} *$ sys. B
P >= eps*eye(n);
cvx_end
sys. $\mathrm{K}=\mathrm{M} \backslash \mathrm{N}$ \% compute K matrix

Simulation

Technique \#4: The Schur Complement Lemma

- QMI:

$$
A^{\top} P+P A+Q-P B R^{-1} B^{\top} P \prec 0
$$

- Very common trick used in control systems
- Block symmetric matrix

$$
\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{\top} & \mathcal{C}
\end{array}\right]
$$

Schur Complement

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{\top} & \mathcal{C}
\end{array}\right] \prec 0 \Longleftrightarrow \mathcal{A} \prec 0, \mathcal{C}-\mathcal{B}^{\top} \mathcal{A}^{-1} \mathcal{B} \prec 0} \\
& {\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{\top} & \mathcal{C}
\end{array}\right] \prec 0 \Longleftrightarrow \mathcal{C} \prec 0, \mathcal{A}-\mathcal{B C}^{-1} \mathcal{B}^{\top} \prec 0}
\end{aligned}
$$

Application to Optimal Control/LQR

- CT-LTI system, quadratic infinite horizon cost:

$$
\mathcal{J}=\int_{0}^{\infty}\left(x^{\top} Q x+u^{\top} R u\right) d t
$$

- Matrices $Q=Q^{\top} \succ 0, R=R^{\top} \succ 0$
- From Continuous Algebraic Riccati Equation (CARE) ${ }^{1}$:

$$
S A^{\top}+A S+Z^{\top} B^{\top}+B Z+S Q S+Z^{\top} R Z \preceq 0
$$

- Taking Schur complements:

$$
\left[\begin{array}{ccc}
S A^{\top}+A S+Z^{\top} B^{\top}+B Z & S & Z^{\top} \\
S & -Q^{-1} & 0 \\
Z & 0 & -R^{-1}
\end{array}\right] \preceq 0
$$

- Voilà! LMIs in $S, Z \Longrightarrow K=Z S^{-1}$

[^0]
Snippet in CVX

```
sys.Q = 0.5*eye(n);
sys.R = [0.05, 0; 0 0.1];
cvx_begin sdp quiet
variable S(n, n) symmetric
variable Z(m, n)
% LMIs
[S*sys.A' + sys.A*S + sys.B*Z + Z'*sys.B', S, Z';...
S, -inv(sys.Q), zeros(n,m);...
Z, zeros(m,n), -inv(sys.R)] <= 0
S >= eps*eye(n)
cvx_end
sys.K = Z/S; % compute K matrix
```


Simulation

Discrete-Time LMIs

DT-LTI System with measurements:

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k] \\
y[k] & =C x[k]
\end{aligned}
$$

Linear observer:

$$
\hat{x}[k+1]=A \hat{x}[k]+B u[k]+L(y[k]-C \hat{x}[k])
$$

- Discrete-Time Observer Lyapunov Equation:

$$
(A-L C)^{\top} P(A-L C)-P \prec 0, P \succ 0
$$

- This is a QMI in L

Synthesis of LMIs

- Directly taking Schur complements:

$$
\left[\begin{array}{cc}
-P & (A-L C)^{\top} \\
A-L C & -P^{-1}
\end{array}\right] \prec 0 \Longrightarrow \text { still not an LMI in } P
$$

- Technique \#5: $P=P P^{-1} P$

$$
(A-L C)^{\top} P P^{-1} P(A-L C)-P \prec 0 \Rightarrow\left[\begin{array}{cc}
-P & \star \\
P A-Y C & -P
\end{array}\right] \prec 0
$$

- Recommend: Derive for DT-LTI state-feedback controller (you might need $P=P^{-1} P P^{-1}$)

Snippet in CVX

```
cvx_begin sdp quiet
% Variable definition
variable P(n, n) symmetric
variable Y(n, p)
% LMIs
[-P, sys.A'*P - sys.C'*Y'; P*sys.A - Y*sys.C, -P] <= 0
P >= eps*eye(n)
cvx_end
sys.L = P\Y; % compute L matrix
```


Simulation

Technique \#6: The S-Procedure

- Question ${ }^{2}$: When does:

$$
\underbrace{z^{\top} F_{1} z \geq 0}_{z \in \mathbb{R}^{n} \backslash\{0\}} \Longrightarrow z^{\top} F_{0} z>0 ?
$$

- Answer: If there exists a $\kappa \geq 0$ such that $F_{0}-\kappa F_{1} \succ 0$
- Intuition: If $F_{0}-\kappa F_{1} \succ 0$ for some $\kappa \geq 0$, then $F_{0} \succ \kappa F_{1}$, so $F_{0} \succ 0$ when $F_{1} \succeq 0$

[^1]
Application to Globally Lipschitz Nonlinear Systems

Nonlinear system:

$$
\begin{aligned}
\dot{x} & =A x+B u+B_{\phi} \phi(x), \\
y & =C x
\end{aligned}
$$

Observer:

$$
\dot{\hat{x}}=A \hat{x}+B u+B_{\phi} \phi(\hat{x})+L(y-C \hat{x})
$$

- The nonlinearity ϕ satisfies $\left\|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right\| \leq \beta\left\|x_{1}-x_{2}\right\|$ for all $x_{1}, x_{2} \in \mathbb{R}^{n}$, (here $\beta>0$)
- Constraint can be written as:

$$
\begin{aligned}
& \left(\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right)^{\top}\left(\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right) \leq \beta^{2}\left(x_{1}-x_{2}\right)^{\top}\left(x_{1}-x_{2}\right) \\
& \quad \Longrightarrow\left[\begin{array}{c}
x_{1}-x_{2} \\
\phi\left(x_{1}\right)-\phi\left(x_{2}\right)
\end{array}\right]^{\top}\left[\begin{array}{cc}
\beta^{2} I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{c}
x_{1}-x_{2} \\
\phi\left(x_{1}\right)-\phi\left(x_{2}\right)
\end{array}\right] \geq 0
\end{aligned}
$$

Restatement of Problem

- Ingredient \#1: (from Lyapunov stability and Technique \#2)
- We need $P \succ 0$ and L such that

$$
\left[\begin{array}{c}
x-\hat{x} \\
\phi(x)-\phi(\hat{x})
\end{array}\right]^{\top}\left[\begin{array}{cc}
+P A--Y C & P B_{\phi} \\
B_{\phi}^{\top} P & 0
\end{array}\right]\left[\begin{array}{c}
x-\hat{x} \\
\phi(x)-\phi(\hat{x})
\end{array}\right]<0
$$

- Ingredient \#2: (from constraint on ϕ)

$$
\left[\begin{array}{c}
x-\hat{x} \\
\phi(x)-\phi(\hat{x})
\end{array}\right]^{\top}\left[\begin{array}{cc}
\beta^{2} I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{c}
x-\hat{x} \\
\phi(x)-\phi(\hat{x})
\end{array}\right] \geq 0
$$

- Compare with S-procedure (choose $z=\left[\begin{array}{ll}x-\hat{x} & \phi(x)-\phi(\hat{x})\end{array}\right]^{\top}$)

$$
z^{\top} F_{1} z \geq 0 \Longrightarrow-z^{\top} F_{0} z>0 ? \quad \longrightarrow \exists \kappa \geq 0: F_{0}+\kappa F_{1} \prec 0
$$

Overall LMI

$$
\begin{aligned}
{\left[\begin{array}{cc}
A^{\top} P+P A-C^{\top} Y^{\top}-Y C+2 \alpha P & P B_{\phi} \\
B_{\phi}^{\top} P & 0
\end{array}\right]+\kappa\left[\begin{array}{cc}
\beta^{2} I & 0 \\
0 & -I
\end{array}\right] } & \preceq 0 \\
P & \succ 0 \\
\kappa & \geq 0
\end{aligned}
$$

- Scalars $\alpha>0$ and $\beta>0$ are assumed to be known \Longrightarrow LMIs in P, Y and κ, c.f.
- Referred to as 'incremental quadratic stability', c.f. [5]
- Bad estimate of β introduces conservatism

Snippet in CVX

```
cvx_begin sdp quiet
% Variable definition
variable P(n, n) symmetric
variable Y(n, p)
variable kap(1,1)
% LMIs
[P*sys.A + sys.A'*P - Y*sys.C - sys.C'*Y'...
    + 0.1*P + kap*beta^2*eye(n), P*sys.Bf;...
sys.Bf'*P, -kap*eye(1)] <= 0
P >= eps*eye(n)
kap >= 0
cvx_end
sys.L = P\Y; % compute L matrix
```


Simulation

Technique \#6: The Generalized Eigenvalue Problem

$A(x), B(x), C(x) \rightarrow$ symmetric matrices

GEVP

$$
\begin{aligned}
\operatorname{minimize} & \lambda \\
\text { subject to: } & \lambda B(x)-A(x) \succeq 0, \\
& B(x) \succ 0, \\
& C(x) \succ 0
\end{aligned}
$$

Bounding Eigenvalues

$$
\lambda_{1} I \preceq P \preceq \lambda_{2} I
$$

Application of GEVP in Robust Control

Disturbed LTI System

$$
\begin{aligned}
\dot{x} & =A x+B u+G w \\
z & =C x+D w \\
u & =-K x
\end{aligned}
$$

Objective: Choose K to minimize 'peak-gain' effect of w on z, c.f. [6]

$$
\begin{aligned}
\operatorname{minimize} & \gamma \\
\text { subject to: } & {\left[\begin{array}{cc}
(A-B K)^{\top} P+P(A-B K)+2 \alpha P & P G \\
G^{\top} P & -2 \alpha I
\end{array}\right] \preceq 0 } \\
& \gamma\left[\begin{array}{cc}
P & 0 \\
0 & I
\end{array}\right]-\left[\begin{array}{cc}
C^{\top} C & C^{\top} D \\
D^{\top} C & D^{\top} D
\end{array}\right] \succeq 0
\end{aligned}
$$

LMIs for \mathcal{L}_{∞} Control

- Use congruence transformation with $\left[\begin{array}{cc}P^{-1} & 0 \\ 0 & I\end{array}\right]$ on first MI
- Define $S=P^{-1}, Z=K S$
- Write $P=S P S$ in second MI and take Schur complements
- LMIs:

$$
\begin{aligned}
\text { minimize } & \gamma \\
\text { subject to: } & {\left[\begin{array}{cc}
S A^{\top}+A S-B Z-Z^{\top} B^{\top}+2 \alpha S & G \\
& G^{\top}
\end{array} \begin{array}{l}
-2 \alpha I
\end{array}\right] \preceq 0 } \\
& {\left[\begin{array}{ccc}
-S & 0 & S C^{\top} \\
0 & -I & D^{\top} \\
C S & D & -\gamma I
\end{array}\right] \preceq 0 } \\
& S \succ 0
\end{aligned}
$$

Snippet in CVX

cvx_begin sdp quiet
variable $S(n, n)$ symmetric
variables $Z(m, n) \operatorname{gam}(1,1)$
minimize (gam)
subject to
[sys.A*S + S*sys.A' - sys.B*Z - Z'*sys.B'...
$+2 * a l p h * S$, sys.G; sys.G', $-2 * a l p h * e y e(q)]<=0$
[-S, zeros(n, q), S*sys.C';...
$\operatorname{zeros}(q, n),-\operatorname{eye}(q)$, sys.D'; ...
sys.C*S, sys.D, -gam*eye(p)] <= 0
$S>=$ eps*eye(n) \% eps is a very small number in MATLAB
gam >= eps
cvx_end
sys. $K=Z / S$; \% compute K matrix

Simulation

Figure: $\sqrt{\gamma}=0.781$

Conclusions

- Quadratic stability notions can generally be presented as LMIs
- Key-point: Convex programming is efficient and solvers are easily available (user-friendly too!)
- Convex relaxations \Longrightarrow applications galore!
- Networked/Decentralized/Distributed systems
- Cybersecurity/Fault-tolerant control
- Fuzzy control
- Kalman filtering
- Information theory
- Optimal experiment design
- Advanced control methods (sliding mode, model predictive control)
- Some methods are shown here to get LMIs for controller/observer design (many more available in, c.f. [7, 8])
- Caveat: Could be conservative!

References

M. Grant, S. Boyd, and Y. Ye, "CVX: Matlab software for disciplined convex programming," 2008.
J. Löfberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in Computer Aided Control Systems Design, 2004 IEEE International Symposium on. IEEE, 2004, pp. 284-289.
M. V. Kothare, V. Balakrishnan, and M. Morari, "Robust constrained model predictive control using linear matrix inequalities," Automatica, vol. 32, no. 10, pp. 1361-1379, 1996.
C. A. Crusius and A. Trofino, "Sufficient LMI conditions for output feedback control problems," Automatic Control, IEEE Transactions on, vol. 44, no. 5, pp. 1053-1057, 1999.
B. Açıkmeşe and M. Corless, "Observers for systems with nonlinearities satisfying incremental quadratic constraints," Automatica, vol. 47, no. 7, pp. 1339-1348, 2011.
T. Pancake, M. Corless, and M. Brockman, "Analysis and control of polytopic uncertain/nonlinear systems in the presence of bounded disturbance inputs," in American Control Conference, 2000. Proceedings of the 2000, vol. 1, no. 6. IEEE, 2000, pp. 159-163.
S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM, 1994, vol. 15.
J. G. VanAntwerp and R. D. Braatz, "A tutorial on linear and bilinear matrix inequalities," Journal of Process Control, vol. 10, no. 4, pp. 363-385, 2000.

[^0]: ${ }^{1}$ Jing Li Hua O. Wang David Niemann. Relations Between LMI and ARE with their applications to Absolute Stability Criteria, Robustness Analysis and Optimal Control.

[^1]: ${ }^{2}$ http://stanford.edu/class/ee363/lectures/lmi-s-proc.pdf

