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Modern Control

Readings: 9.1–9.4 Ogata; 3.1–3.3 Dorf & Bishop

In the previous modules, we discussed the analysis and design of
control systems via frequency-domain techniques

– Root locus, PID controllers, compensators, state-feedback control,
etc...

– These studies are considered as the classical control theory—based
on the s-domain

This module: we’ll introduce time-domain techniques

– Theory is based on State-Space Representations—modern control

Why do we need that? Many reasons
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ODEs & Transfer Functions

For linear systems, we can often represent the system dynamics
through an nth order ordinary differential equation (ODE):

y (n)(t) + a1y (n−1)(t) + a2y (n−2)(t) + · · ·+ an−1ẏ(t) + any(t) =

b0u(n)(t) + b1u(n−1)(t) + b2u(b−2)(t) + · · ·+ bn−1u̇(t) + bnu(t)

The y (k) notation means we’re taking the kth derivative of y(t)

Input: u(t); Output: y(t)—What if we have MIMO system?

Given that ODE description, we can take the LT (assuming zero
initial conditions for all signals):

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an
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ODEs & TFs

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

This equation represents relationship between one system input and
one system output

This relationship, however, does not show me the internal states of
the system, nor does it explain the case with multi-input system

For that (and other reasons), we discuss the notion of system state

Definition: x(t) is a state-vector that belongs to Rn: x(t) ∈ Rn

x(t) is an internal state of a system

Examples: voltages and currents of circuit components
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ODEs, TFs to State-Space Representations

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

State-space (SS) theory: representing the above TF of a system by
a vector-form first order ODE:

ẋ(t) = Ax(t) + Bu(t), x initial = xt0 , (1)
y(t) = Cx(t) + Du(t), (2)

– x(t) ∈ Rn: dynamic state-vector of the LTI system, u(t):
control input-vector, n = order of the TF/ODE

– y(t): output-vector and A,B,C ,D are constant matrices

– For the above transfer function, we have one input U(s) and one
output Y (s), hence the size of y(t) and u(t) is only one (scalars)

Module Objectives: learn how to construct matrices A,B,C ,D
given a transfer function
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State-Space Representation 1

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

Given the above TF/ODE, we want to find

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The above two equations represent a relationship between the input
and output of the system via the internal system states
The above 2 equations are nothing but a first order differential
equation
Wait, WHAT? But the TF/ODE was an nth order ODE. How do we
have a first order ODE now?
Well, because this equation is vector-matrix equation, whereas the
ODE/TF was a scalar equation
Next, we’ll learn how to get to these 2 equations from any TF
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State-Space Representation 2 [Ogata, P. 689]
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State-Space Representation 3 [Ogata, P. 689]
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State-Space Representation 4 [Ogata, P. 689]
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Final Solution

Combining equations (9-74,75,76), we can obtain the following
vector-matrix first order differential equation:

ẋ(t) =


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)
ẋn(t)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1




x1(t)
x2(t)

...
xn−1(t)
xn(t)


︸ ︷︷ ︸

Ax(t)

+


0
0
...
0
1

 u(t)

︸ ︷︷ ︸
Bu(t)

y(t) =
[
bn − anb0| bn−1 − an−1b0| · · · | b1 − a1b0

]


x1(t)
x2(t)

...
xn−1(t)
xn(t)


︸ ︷︷ ︸

Cx(t)

+ b0u(t)︸ ︷︷ ︸
Du(t)
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Remarks

For any TF with order n (order of the denominator), with one input
and one output:

– A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n,D ∈ R

– Above matrices are constant ⇒ system is linear time-invariant
(LTI)

– If one term of the TF/ODE (i.e., the a’s and b’s) change as a
function of time, the matrices derived above will also change in time
⇒ system is linear time-varying (LTV)

The above state-space form is called the controllable canonical form

You can come up with different forms of A,B,C ,D matrices given a
different transformation
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State-Space and Block Diagrams

From the derived eqs. before, you can construct the block diagram
An integrator block is equivalent to a 1

s , the inputs and outputs of
each integrator are the derivative of the state ẋi (t) and xi (t)
A system (TF/ODE) of order n can be constructed with n
integrators (you can construct the system with more integrators)
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Example 1
Find a state-space representation (i.e., the state-space matrices) for
the system represented by this second order transfer function:

Y (s)
U(s) = s + 3

s2 + 3s + 2
Solution: look at the previous slides with the matrices:

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an
=

b0︷︸︸︷
0 s2 +

b1︷︸︸︷
1 s +

b2︷︸︸︷
3

s2 + 3︸︷︷︸
a1

s + 2︸︷︷︸
a2

– First, n = 2⇒ A ∈ R2×2,B ∈ R2×1,C ∈ R1×2,D ∈ R

ẋ(t) =
[

0 1
−2 −3

]
︸ ︷︷ ︸

A

x(t) +
[

0
1

]
︸︷︷︸

B

u(t)

y(t) =
[
3 1

]︸ ︷︷ ︸
C

x(t) + 0︸︷︷︸
D

u(t)
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Other State-Space Forms Given a TF/ODE1

Observable Canonical Form:

1Derivation from Ogata, but similar to the controllable canonical form.
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Block Diagram of Observable Canonical Form
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Other State-Space Forms Given a TF/ODE

Diagonal Canonical Form2:

⇓ ⇓ ⇓

2This factorization assumes that the TF has only distinct real poles.
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Block Diagram of Diagonal Canonical Form
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Example 1 Solution for other Canonical Forms
Find the observable and diagonal forms for

Y (s)
U(s) =

b0︷︸︸︷
0 s2 +

b1︷︸︸︷
1 s +

b2︷︸︸︷
3

s2 + 3︸︷︷︸
a1

s + 2︸︷︷︸
a2

Solution: look at the previous slides with the constructed
state-space matrices:

– Observable Canonical Form:

ẋ(t) =
[

0 −2
1 −3

]
︸ ︷︷ ︸

A

x(t) +
[

3
1

]
︸︷︷︸

B

u(t), y(t) =
[
0 1

]︸ ︷︷ ︸
C

x(t) + 0︸︷︷︸
D

u(t)

– Diagonal Canonical Form:

ẋ(t) =
[
−1 0
0 −2

]
︸ ︷︷ ︸

A

x(t)+
[

1
1

]
︸︷︷︸

B

u(t), y(t) =
[
2 −1

]︸ ︷︷ ︸
C

x(t)+ 0︸︷︷︸
D

u(t)
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State-Space to Transfer Functions
Given a state-space representation:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

can we obtain the transfer function back? Yes:
Y (s)
U(s) = C(sI − A)−1B + D

Example: find the TF corresponding for this SISO system:

ẋ(t) =
[
−1 0
0 −2

]
︸ ︷︷ ︸

A

x(t)+
[

1
1

]
︸︷︷︸

B

u(t), y(t) =
[
2 −1

]︸ ︷︷ ︸
C

x(t)+ 0︸︷︷︸
D

u(t)

Solution:
Y (s)
U(s) = C(sIn−A)−1B+D =

[
2 −1

](
s
[

1 0
0 1

]
−
[
−1 0
0 −2

])−1 [1
1

]
+0

= s + 3
s2 + 3s + 2 , that’s the TF from the previous example!
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MATLAB Commands

ss2tf(A,B,C,D,iu)

tf2ss(num,den)

Demo
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Important Remarks

So why do we want to go from a transfer function to a
time-representation, ODE form of the system?
There are many benefits for doing so, such as:

1 Stability analysis for MIMO systems becomes way easier
2 We have powerful mathematical tools that helps us design controllers
3 RL and compensator designs were relatively tedious design problems
4 With state-space representations, we can easily design controllers
5 Nonlinear systems: cannot use TFs for nonlinear systems
6 State-space is all about time-domain analysis, which is far more

intuitive than frequency-domain analysis
7 With Laplace transforms and TFs, we had to take inverse Laplace

transforms. In many cases, the Laplace transform does not exist,
which means time-domain analysis is the only way to go

We will learn how to get a solution for y(t) for any given u(t) from
the state-space representation of the system without Laplace
transform—via ODE solutions for matrix-vector equations
Before that, we need to introduce some linear algebra preliminaries
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Linear Algebra Revision
Eigenvalues/Eigenvectors of a matrix

Evalues/vectors are only defined for square3 matrices
For a matrix A ∈ Rn×n, we always have n evalues/evectors

– Some of these evalues might be distinct, real, repeated, imaginary
– To find evalues(A), solve this equation (In: identity matrix of size n)

det(λIn −A) = 0 or det(A− λIn) = 0⇒ a0λ
n + a1λ

n−1 + · · ·+ an = 0

Example: det
[
a b
c d

]
= ad − bc.

Eigenvectors: A number λ and a non-zero vector v satisfying

Av = λv ⇒ (A− λIn)v = 0

are called an eigenvalue and an eigenvector of A
– λ is an eigenvalue of an n × n-matrix A if and only if λIn − A is not

invertible, which is equivalent to

det(A− λIn) = 0.
3A square matrix has equal number of rows and columns.
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Matrix Inverse
Inverse of a generic 2by2 matrix:

A−1 =
[
a b
c d

]−1
= 1

det(A)

[
d −b
−c a

]
= 1

ad − bc

[
d −b
−c a

]
– Notice that A−1A = AA−1 = I2

Inverse of a generic 3by3 matrix:

A−1 =

a b c
d e f
g h i

−1

= 1
det(A)

 A B C
D E F
G H I

T

= 1
det(A)

 A D G
B E H
C F I


A = (ei − fh) D = −(bi − ch) G = (bf − ce)

B = −(di − fg) E = (ai − cg) H = −(af − cd)
C = (dh − eg) F = −(ah − bg) I = (ae − bd)

det(A) = aA + bB + cC .

– Notice that A−1A = AA−1 = I3
©Ahmad F. Taha Module 09 — From s-Domain to Time-Domain; From ODEs, TFs to State-Space 23 / 38



Introduction to Modern Control Theory State Space Representations Linear Algebra Review LTI Systems Properties

Linear Algebra — Example 1
Find the eigenvalues, eigenvectors, and inverse of matrix

A =
[

1 4
3 2

]
– Eigenvalues: λ1,2 = 5,−2

– Eigenvectors: v1 =
[
1 1

]>
, v2 =

[
− 4

3 1
]>

– Inverse: A−1 = − 1
10

[
2 −4
−3 1

]
Write A in the matrix diagonal transformation, i.e., A = TDT−1

where D is the diagonal matrix containing the eigenvalues of A:

A =
[
v1 v2 · · · vn

]

λ1

λ2
. . .

λn

 [v1 v2 · · · vn
]−1

– Only valid for matrices with distinct, real eigenvalues
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Rank of a Matrix
Rank of a matrix: rank(A) is equal to the number of linearly
independent rows or columns

– Example 1: rank
([

1 1 0 2
−1 −1 0 −2

])
=?

– Example 2: rank

 1 2 1
−2 −3 1
3 5 0

 =?

Rank computation: reduce the matrix to a simpler form, generally
row echelon form, by elementary row operations

– Example 2 Solution: 1 2 1
−2 −3 1
3 5 0

→ 2r1 + r2

1 2 1
0 1 3
3 5 0

→ −3r1 + r3

1 2 1
0 1 3
0 −1 −3


→ r2 + r3

1 2 1
0 1 3
0 0 0

→ −2r2 + r1

1 0 −5
0 1 3
0 0 0

⇒ rank(A) = 2

For a matrix A ∈ Rm×n: rank(A) ≤ min(m, n)
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Null Space of a Matrix
The Null Space of any matrix A is the subspace K defined as follows:

N(A) = Null(A) = ker(A) = {x ∈ K|Ax = 0}

Null(A) has the following three properties:

– Null(A) always contains the zero vector, since A0 = 0

– If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A)

– If x ∈ Null(A) and c is a scalar, then cx ∈ Null(A)

Example: Find N(A)

A =
[

2 3 5
−4 2 3

]
⇒
[

2 3 5
−4 2 3

]a
b
c

 =
[

0
0

]
⇒
[

2 3 5 0
−4 2 3 0

]
⇒

[
1 0 1/16 0
0 1 13/8 0

]
⇒ a = − 1

16c, b = −13
8 c ⇒

a
b
c

 = α

−1/16
−13/8

1

 = α̃

 −1
−26
16
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Linear Algebra — Example 2

Find the determinant, rank, and null-space set of this matrix:

B =

0 1 2
1 2 1
2 7 8


– det(B) = 0
– rank(B) = 2

– null(B) = α

 3
−2
1

 ,∀ α ∈ R

Is there a relationship between the determinant and the rank of a
matrix?

– Yes! Matrix drops rank if determinant = zero ⇒ 1 zero evalue
True or False?

– AB = BA for all A and B—FALSE!
– A and B are invertible → (A + B) is invertible—FALSE!
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Matrix Exponential — 1

Exponential of scalar variable:

ea =
∞∑

i=0

ai

i! = 1 + a + a2

2! + a3

3! + a4

4! + · · ·

Power series converges ∀ a ∈ R

How about matrices? For A ∈ Rn×n, matrix exponential:

eA =
∞∑

i=0

Ai

i! = In + A + A2

2! + A3

3! + A4

4! + · · ·

What if we have a time-variable?

etA =
∞∑

i=0

(tA)i

i! = In + tA + (tA)2

2! + (tA)3

3! + (tA)4

4! + · · ·
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Matrix Exponential Properties

For a matrix A ∈ Rn×n and a constant t ∈ R:
1 Av = λv ⇒ eAtv = eλtv
2 4det(eAt) = e(trace(A))t

3 (eAt)−1 = e−At

4 eA>t = (eAt)>

5 If A,B commute, then: e(A+B)t = eAteBt = eBteAt

6 eA(t1+t2) = eAt1eAt2 = eAt2eAt1

4Trace of a matrix is the sum of its diagonal entries.
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When Is It Easy to Find eA? Method 1
Well...Obviously if we can directly use eA = In + A + A2

2! + · · ·

Three cases for Method 1
Case 1 A is nilpotent5, i.e., Ak = 0 for some k. Example:

A =

 5 −3 2
15 −9 6
10 −6 4


Case 2 A is idempotent, i.e., A2 = A. Example:

A =

 2 −2 −4
−1 3 4
1 −2 −3


Case 3 A is of rank one: A = uvT for u, v ∈ Rn

Ak = (vT u)k−1A, k = 1, 2, . . .
5Any triangular matrix with 0s along the main diagonal is nilpotent
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Method 2 — Jordan Canonical Form
All matrices, whether diagonalizable or not, have a Jordan canonical
form: A = TJT−1, then eAt = TeJtT−1

Generally, J =

J1
. . .

Jp

,

J i =


λi 1

λi
. . .
. . . 1

λi

 ∈ Rni×ni ⇒,

eJ i t =


eλi t teλi t . . . tni−1eλi t

(ni−1)!

0 eλi t . . . tni−2eλi t

(ni−2)!
... 0

. . .
...

0 . . . 0 eλi t

 ⇒ eAt = T

eJ1t

. . .
eJot

T−1

Jordan blocks and marginal stability
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Examples

Find eA(t−t0) for matrix A given by:

A = TJT−1 =
[
v1 v2 v3 v4

] 
−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 −1

 [v1 v2 v3 v4
]−1

Solution:
eA(t−t0) = TeJ(t−t0)T−1

=
[
v1 v2 v3 v4

] 
e−(t−t0) 0 0 0

0 1 t − t0 0
0 0 1 0
0 0 0 e−(t−t0)

 [v1 v2 v3 v4
]−1

Find eA(t−t0) for matrix A given by:

A1 =
[

1 0
0 −2

]
and A2 =

[
0 1
0 −2

]
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Solution to the State-Space Equation
In the next few slides, we’ll answer this question: what is a solution
to this vector-matrix first order ODE:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

By solution, we mean a closed-form solution for x(t) and y(t) given:
– An initial condition for the system, i.e., x(tinitial ) = x(0)
– A given control input signal, u(t), such as a step-input (u(t) = 1),

ramp (u(t) = t), or anything else
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The Curious Case of Autonomous Systems—Case 1
Let’s assume that we seek solution to this system first:

ẋ(t) = Ax(t), x(0) = x0 = given
y(t) = Cx(t)

This means that the system operates without any control
input—autonomous system (e.g., autonomous vehicles)
First, let’s look at ẋ(t) = Ax(t)—what’s the solution to this first
order ODE?

– First case: A = a is a scalar ⇒ x(t) = eatx0
– Second case: A is a matrix

⇒ x(t) = eAtx0 ⇒ y(t) = Cx(t) = CeAtx0

Exponential of scalars is very easy, but exponentials of matrices can
be very challenging
Hence, for an nth order system, where n ≥ 2, we need to compute
the matrix exponential in order to get a solution for the above
system—we learned that in the linear algebra revision section
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Example (Case 1)

x(t) = eAtx0, y(t) = Cx(t) = CeAtx0

Find the solution for these two autonomous systems separately:

A1 =
[

1 0
0 −2

]
,C1 =

[
1 2

]
, x(1)

0 =
[

1
2

]

A2 =
[

0 1
0 −2

]
,C2 =

[
2 0

]
, x(2)

0 =
[
−1
1

]
Solution:
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Case 2—Systems with Inputs
MIMO (or SISO) LTI dynamical system:

ẋ(t) = Ax(t) + Bu(t), x(t0) = xt0 = given
y(t) = Cx(t) + Du(t)

The to the above ODE is given by:

x(t) = eA(t−t0)xt0 +
∫ t

t0

eA(t−τ)Bu(τ) dτ

Clearly the output solution is:

y(t) = C
(

eA(t−t0)xt0

)
︸ ︷︷ ︸
zero input response

+ C
(∫ t

t0

eA(t−τ)Bu(τ) dτ
)

+ Du(t)︸ ︷︷ ︸
zero state response

Question: how do I analytically compute y(t) and x(t)?

Answer: you need to (a) integrate and (b) compute matrix
exponentials (given A,B,C ,D, xt0 ,u(t))
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Example (Case 2)

x(t) = eA(t−t0)xt0 +
∫ t

t0

eA(t−τ)Bu(τ) dτ

y(t) = C
(

eA(t−t0)xt0

)
︸ ︷︷ ︸
zero input response

+ C
(∫ t

t0

eA(t−τ)Bu(τ) dτ
)

+ Du(t)︸ ︷︷ ︸
zero state response

Find the solution for these two LTI systems with inputs:

A1 =
[

1 0
0 −2

]
,B1 =

[
1
1

]
,C1 =

[
1 2

]
, x(1)

0 =
[

1
2

]
,D1 = 0, u1(t) = 1

A2 =
[

0 1
0 −2

]
,B2 =

[
1
−1

]
,C2 =

[
2 0

]
, x(2)

0 =
[
−1
1

]
,D2 = 1, u2(t) = 2e−2t

Solution:
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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