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Modern Control

@ Readings: 9.1-9.4 Ogata; 3.1-3.3 Dorf & Bishop

@ In the previous modules, we discussed the analysis and design of
control systems via frequency-domain techniques

— Root locus, PID controllers, compensators, state-feedback control,
etc...

— These studies are considered as the classical control theory—based
on the s-domain

@ This module: we'll introduce time-domain techniques
— Theory is based on State-Space Representations—modern control

@ Why do we need that? Many reasons
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ODEs & Transfer Functions

u(t) y(t)

—

e For linear systems, we can often represent the system dynamics
through an nth order ordinary differential equation (ODE):

Y(e) + ary "I () + ay "D (1) + -+ an-1y(8) + any(t) =
bou™(t) + byu" V() + byu®=2(t) + - 4 b,_1i(t) + byu(t)
@ The y(¥) notation means we're taking the kth derivative of y(t)
o Input: u(t); Output: y(t)—What if we have MIMO system?

@ Given that ODE description, we can take the LT (assuming zero
initial conditions for all signals):

Y(s)  bos" + bis" 1+ .-+ b,_15+ b,
U(s)  s"+ais" 1+ +ap 15+ a,
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ODEs & TFs

Y(s)  bos" + bis" 14 4+ by_15+ b,

H(s) =
(=) U(s) s"+a1s" 4+ a3, 15+ a,

@ This equation represents relationship between one system input and
one system output

@ This relationship, however, does not show me the internal states of
the system, nor does it explain the case with multi-input system

@ For that (and other reasons), we discuss the notion of system state
o Definition: x(t) is a state-vector that belongs to R": x(t) € R”
e x(t) is an internal state of a system

o Examples: voltages and currents of circuit components
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ODEs, TFs to State-Space Representations

H(s) =

Y(s)  bos"+ bys" 4+ by_15+ b,
U(s)  s"+ais" 14 +a, 15+ a,

a vector-form first order ODE:

x(t) = Ax(t)+ Bu(t), Xinitial = X,
y(t) = Cx(t)+ Du(t),

- x(t) € R": dynamic state-vector of the LTI system, u(t):
control input-vector, n = order of the TF/ODE

y(t): output-vector and A, B, C, D are constant matrices

LTI Systems Prope

0000000

State-space (SS) theory: representing the above TF of a system by

(1)
()

For the above transfer function, we have one input U(s) and one

output Y(s), hence the size of y(t) and u(t) is only one (scalars)

@ Module Objectives: learn how to construct matrices A, B, C, D
given a transfer function
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State-Space Representation 1

Y(s)  bos"+ bys" 4+ by_15+ b,
U(s)  s"+ais" 14 +a, 15+ a,

H(s) =

e Given the above TF/ODE, we want to find

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

@ The above two equations represent a relationship between the input
and output of the system via the internal system states

@ The above 2 equations are nothing but a first order differential
equation

o Wait, WHAT? But the TF/ODE was an nth order ODE. How do we
have a first order ODE now?

@ Well, because this equation is vector-matrix equation, whereas the
ODE/TF was a scalar equation

@ Next, we'll learn how to get to these 2 equations from any TF
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State-Space Representation 2 [Ogata, P. 639]

a,1by)s + (b, — a,by)

Y(s) _ b (b = aybo)s"™" + - + (byy —
U(s) 0 s"+ as" N+ +a, s +oa,
which can be modified to
Y(s) = boU(s) + Y(s) (9-71)
where
n—1 — —
}}(s) - (bl albO)ss” ++a1s": (i"il. + Z:jfozf :n (b" anbﬂ) ve)
Let us rewrite this last equation in the following form:
Y(s)
(bl — albo)s"’l + o+ (b,,,l - a,,,lbo)s + (b,, — anbo)
U(s
Tt as T .(4.)+ a5 +a, = Q(s)
From this last equation, the following two equations may be obtained:
S0(s) = ~ars"'Q(s) = — a,15Q(s) ~ a,Q(s) + U(s) (0-72)
Y(s) = (b — aby)s" 'Q(s) + -+ (b, — a,_1b)sO(s)
(9-73)

+ (b,L — anbO)Q(s)
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State-Space Representation 3 [Ogata, P. 639]

Now define state variables as follows:
Xi(s) = Q(s)
Xo(s) = sQ(s)

Xoa(s) = 5"720(s)
X”(S) = S’I?lQ(S)
Then, clearly,
sXi(s) = Xo(s)
sXo(s) = Xa(s)

sXua(s) = Xo(s)
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State-Space Representation 4 [Ogata, P. 639]

which may be rewritten as

X =x
Xy = X3
) (9-74)
X1 = X,
Noting that s"Q(s) = sX,(s), we can rewrite Equation (9-72) as
sX,(s) = —a1 X, (s) — - = @, X(s) — a,Xi(s) + U(s)
or
X, = —@,X) ~ 4,1 X~ = X, tu (9-75)
Also, from Equations (9-71) and (9-73), we obtain
Y(s) = boU(s) + (by = arbo)s"'Q(s) + -+ + (by1 = @, 1bo)sQ(5)
+ (b, — a,b)Q(s)
= bU(s) + (b — albo)Xn(S) ot (bt — an—lbo)Xz(S)
+ (b, — a,bo) Xi(s)
The inverse Laplace transform of this output equation becomes
y= (bn - anbO)Xl + (bn—l —a, by + o (bl = aybo)x, + bou (9-76)

LTI Systems Properties
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©Ahmad F. Taha Module 09 — From s-Domain to Time-Dom From ODEs, TFs to State-Space



Introduction to Modern Control Theory State Space Representations Linear Algebra Review LTI Systems Properties
0000 O000@0000000000 00000000000 0000000

Final Solution

e Combining equations (9-74,75,76), we can obtain the following
vector-matrix first order differential equation:

5(1(1“) 0 1 0 cee 0 Xl(t) 0
%o(t) 0 0 1 0 || =) 0
x(t) = : =1 : : : : : + | 1] u(t)
).(n—l( ) 0 0 0 1 Xn_l(t) 0
Xn(1) —a, —ap_1 an_o —a; Xn(1) 1
Ax(t) Bu(t)
x(t)
x(t)
y(t) = [bn — anbo| bp-1—ap1bo| ---| by — aiby] : + bou(t)
——
Xn—l(t) Du(t)
Xn(1)
Cx(t)
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Remarks

e For any TF with order n (order of the denominator), with one input
and one output:

~ AeR™" BeR™ CeR> , DeR

— Above matrices are constant = system is linear time-invariant
(LTn

— If one term of the TF/ODE (i.e., the a's and b’s) change as a
function of time, the matrices derived above will also change in time
= system is linear time-varying (LTV)

@ The above state-space form is called the controllable canonical form

@ You can come up with different forms of A, B, C, D matrices given a
different transformation
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State-Space and Block Diagrams

LU A S

by —ajby by = azby by_y = ay_1by b, = a,by
u
» _——
I 17 I = 4 I
Xn Kol X2 X1
aj a) apq a,
+ @4— - —@4—

@ From the derived egs. before, you can construct the block diagram

@ An integrator block is equivalent to a % the inputs and outputs of
each integrator are the derivative of the state x;(t) and x;(t)

o A system (TF/ODE) of order n can be constructed with n

integrators (you can construct the system with more integrators)
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Example 1

o Find a state-space representation (i.e., the state-space matrices) for
the system represented by this second order transfer function:

Y(s)  s+3
U(s) s2+3s+2

@ Solution: look at the previous slides with the matrices:

bo b b
H(s) Y(s) bos"+bys" ' +---4byys+by, 0 s°+ 1 s+ 3
S) = = =
U(s) s"+ais" 4 +a,1s+a, 24+ 3 s+ 2
a an

— First, n=2=AcR?>2 BecR>*>*1 CcR*2. DeR

x(t) = [_02 _13} x(t) + m u(t)
T a ey
y(t) =3 1]X(t)+\q_/u(t)

c
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Other State-Space Forms Given a TF/ODE!

Observable Canonical Form:

).Cl _0 0 0 —da, X1 B bn - anbo
).Cz 1 0 0 7(1,1,1 xZ b”,1 - an,1b0
= + u
L Xn_| _O 0 1 —ay || X,_| bl - a]b()
— . —
X2

y=[0 0 - 0 1] - + bou

Xn-1

L Xn _|

IDerivation from Ogata, but similar to the controllable canonical form.
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Block Diagram of Observable Canonical Form

by —apbo by1 = ap1bo by —arbg bo

N

Ay Ap-1 ap
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Other State-Space Forms Given a TF/ODE

Diagonal Canonical Forn?:

Y(s)  bys" + bys" 4 b, s+ b,
U(s) (s + p)(s + po)o(s + pa)

€1 G 4 Cn

=D, + + + e
s+ m s+ p s+ p,

X - 0 X1 1
X P2 X2 1
= + u

X 0 —Pu L X, 1
X1
X2

y=[a o - < + bou

X,

2This factorization assumes that the TF has only distinct real poles.
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Block Diagram of Diagonal Canonical Form
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> by
1 X1
> 1 Ci —{+
S+ p
u 1 X y
(5] |+ P
S+p2
1 . .
I I 3
o 1 Xn
- .
S+ Py "
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Example 1 Solution for other Canonical Forms

o Find the observable and diagonal forms for
bo by by
~ =~ = =~
Y (s) 0 2+ 1 s+ 3

2
24+ 3 s+ 2

ai az

@ Solution: look at the previous slides with the constructed
state-space matrices:

— Observable Canonical Form:

. 0 -2 3
x(t) = o x(t) + u(t), y(t)=1[0 1]x(t)+_0 u(t)
|:1 - 3:| Lij/ HE_/ ~~
— Diagonal Canonical Form:
. -1 0 1
x(t) = [0 _2} x(t)+ H u(t), y(t)=1[2 -1] X(t)—l—\O/_/u(t)
¥ ¢ ’
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State-Space to Transfer Functions

o Given a state-space representation:

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t)

can we obtain the transfer function back? Yes:
Y(s)

=C(sl-A)'B+D

U(s)

o Example: find the TF corresponding for this SISO system:

) -1 0 1
x(t) = [o 2} x(t)+ H u(t), y(t)=[2 1] x(t)+ 0_u(t)
- ¢ b
A B
o Solution:
Y(s) -1 _ 1.0 -1 o)L
o eawo-e () 1-[3 4) [
s+3 , i
= 21357 that's the TF from the previous example!
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MATLAB Commands

@ ss2tf(A,B,C,D,iu)
o tf2ss(num,den)

@ Demo
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Important Remarks

@ So why do we want to go from a transfer function to a
time-representation, ODE form of the system?

@ There are many benefits for doing so, such as:

Stability analysis for MIMO systems becomes way easier

We have powerful mathematical tools that helps us design controllers

RL and compensator designs were relatively tedious design problems

With state-space representations, we can easily design controllers

Nonlinear systems: cannot use TFs for nonlinear systems

State-space is all about time-domain analysis, which is far more

intuitive than frequency-domain analysis

With Laplace transforms and TFs, we had to take inverse Laplace

transforms. In many cases, the Laplace transform does not exist,

which means time-domain analysis is the only way to go

© 000000

@ We will learn how to get a solution for y(t) for any given u(t) from
the state-space representation of the system without Laplace
transform—via ODE solutions for matrix-vector equations

@ Before that, we need to introduce some linear algebra preliminaries
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Linear Algebra Revision

Eigenvalues/Eigenvectors of a matrix
e Evalues/vectors are only defined for square®> matrices

@ For a matrix A € R™" we always have n evalues/evectors
Some of these evalues might be distinct, real, repeated, imaginary
To find evalues(A), solve this equation (/,: identity matrix of size n)

det(Al, —A) =0 or det(A—Al,) =0=> 2\ +a A" 14 +2,=0

a b
c d} = ad — bc.
o Eigenvectors: A number A and a non-zero vector v satisfying

Av=)JXv=(A-Xl,)v=0

o Example: det[

are called an eigenvalue and an eigenvector of A
— A is an eigenvalue of an n x n-matrix A if and only if A/, — A is not
invertible, which is equivalent to

det(A— Al,) = 0.

3A square matrix has equal number of rows and columns.
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Matrix Inverse

@ Inverse of a generic 2by2 matrix:

at_[a b1 d —b] 1 d —b
e d| det(A)|-c¢ a| ad—bc|—c a

— Notice that A™'A=AA"' = |,

@ Inverse of a generic 3by3 matrix:

a b ]t . [A B 7 ., [A D G
Al-|d e f| =——|D E F| =—~_|B E H
g h i dtA) | g H dt(A) | c F

A= (ei—fh) D= —(bi—ch) G=(bf—ce)
B=—(di—fg) E=(ai—cg) H=—(af —cd)
C=(dh—eg) F=—(ah—bg) [|=(ae— bd)

| det(A) = aA + bB + cC. |

— Notice that A”lA=AA" =
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Linear Algebra — Example 1

o Find the eigenvalues, eigenvectors, and inverse of matrix

ny

— Eigenvectors: vy = [1 l]T Vo =[—

_ 2 -4
. 1 1
— Inverse: A™" = =35 [ ]

— Eigenvalues: A\, =5,-2

1"

Wi

-3 1

e Write A in the matrix diagonal transformation, ie, A= TDT*
where D is the diagonal matrix containing the eigenvalues of A:

A1
A2

— Only valid for matrices with distinct, real eigenvalues
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Rank of a Matrix

@ Rank of a matrix: rank(A) is equal to the number of linearly
independent rows or columns

1 1 0 2
: =7
Example 1: rank ({1 10 2}) /

1 2 1
— Example 2: rank [ [-2 -3 1 =7
3 5 0

Rank computation: reduce the matrix to a simpler form, generally
row echelon form, by elementary row operations
— Example 2 Solution:

1 2 1 1 21 1 2 1

-2 -3 1| »22n+mn|0 1 3| --3n+nr|0 1 3

3 5 0 3 50 0 -1 -3
1 21 1 0 -5

—n+r|0 1 3| >-2n+nr|0 1 3 |= rank(A) =2
0 0O 0 0 O

o For a matrix A € R™*": rank(A) < min(m, n)
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Null Space of a Matrix

@ The Null Space of any matrix A is the subspace K defined as follows:
N(A) = Null(A) = ker(A) = {x € K|Ax = 0}
Null(A) has the following three properties:

Null(A) always contains the zero vector, since A0 =0

If x € Null(A) and y € Null(A), then x + y € Null(A)

If x € Null(A) and c is a scalar, then cx € Null(A)
e Example: Find N(A)

a2 35823 5]/ _[0]_[2 35[0]_
-4 2 3 —423C_0 | —4 2 3]0
T ~1/16 -1
1 0 1/16]0 1 13 2 .
[O 1 13/80] a——l—6c,b——§c = lz =« —lf/8 =& —1266

©Ahmad F. Taha Module 09 — From s-Domain to Time-Domain; From ODEs, TFs to State-Space



Introduction to Modern Control Theory State Space Representations Linear Algebra Review LTI Systems Properties
0000 0000000000000 00 O0000e00000 0000000

Linear Algebra — Example 2

o Find the determinant, rank, and null-space set of this matrix:

01 2
B=(1 2 1
2 7 8
- det(B) =0
- rank(B) =2
3
-null(B)=a |-2|,VaeR
1
@ Is there a relationship between the determinant and the rank of a
matrix?

— Yes! Matrix drops rank if determinant = zero = 1 zero evalue
@ True or False?

— AB = BA for all A and B—FALSE!

— A and B are invertible — (A + B) is invertible—FALSE!
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Matrix Exponential — 1

@ Exponential of scalar variable:

a—iai 1+a+a—2+a—3+a—4+
T T 21 " 3l

@ Power series converges V a € R

@ How about matrices? For A € R"™", matrix exponential:

e’ = _,+A+7+7+7+

A iA’ A2 A A
’_:01 3!

@ What if we have a time-variable?

AL SR g CAR AP (A
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Matrix Exponential Properties

For a matrix A € R"™" and a constant t € R:
Q Av=)\v = ity =ely

[2) 4det(eAt) _ e\(trace(A))t

o (eAt)—l — oAt

Q A't— (eA)T

Q If A, B commute, then: e(A+B)t — gAteBt — Bt oAt

° eA(t1+t2) — eAtl eAtz — eAtz eAt1

4Trace of a matrix is the sum of its diagonal entries.
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When Is It Easy to Find e?? Method 1

Well...Obviously if we can directly use e* =1, + A + ‘g—f + -

Three cases for Method 1
Case 1 A is nilpotent®, i.e., A¥ = 0 for some k. Example:

5 -3 2
A= |15 -9 6
10 -6 4

Case 2 A is idempotent, i.e., A=A Example:

2 -2 -4
A=|-1 3 4
1 -2 -3

Case 3 Ais of rank one: A= uv' for u,v € R"

A= (vTu) A k=1,2,...

5Any triangular matrix with Os along the main diagonal is nilpotent
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Method 2 — Jordan Canonical Form

o All matrices, whether diagonalizable or not, have a Jordan canonical
form: A= TJT !, then eAt = TeltT!

J1
o Generally, J = ,
Jp
A1
Ao
Ji= ' € R"XM =,
' 1
A
it it thi—teNit
eMt  teNt . LS
(n,-fl)! eJlt
At . thi—2elit
N I ol L T
: 0 : elot

0 0 ehit

@ Jordan blocks and marginal stability
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Examples

@ Find eAlt—%) for matrix A given by:

-1 0 0 O
_ 0 01 o -
A:TJle[vl vy V3 v4} 0 00 o0 [vl vy V3 v4} !
0 0 0 -1

e Solution:
eA(t—tg) _ TeJ(t—to)T—l

e (t=0) 0 0 0
0 1 t—t 0
0 0 1 0
0 0 0 e

e Find eA(t=%) for matrix A given by:

1 0 0 1
A1:|:0 2:| and A2:|:0 2:|

©Ahmad F. Taha
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Introduction to Modern Control Theory
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Solution to the State-Space Equation

@ In the next few slides, we'll answer this question: what is a solution
to this vector-matrix first order ODE:

x(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t)
@ By solution, we mean a closed-form solution for x(t) and y(t) given:
— An initial condition for the system, i.e., x(tiitiar) = x(0)
— A given control input signal, u(t), such as a step-input (u(t) = 1),
ramp (u(t) = t), or anything else

D
x(0)
u(t) B x(t) % x(t) C y(t)
A
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The Curious Case of Autonomous Systems—Case 1

@ Let's assume that we seek solution to this system first:
x(t) = Ax(t),x(0) = xo = given
y(t) = Cx(t)

@ This means that the system operates without any control

input—autonomous system (e.g., autonomous vehicles)

e First, let's look at x(t) = Ax(t)—what’s the solution to this first
order ODE?

— First case: A = ais a scalar = x(t) = e¥xp
— Second case: A is a matrix

= x(t) = e’xg = y(t) = Cx(t) = Ce'xq

@ Exponential of scalars is very easy, but exponentials of matrices can
be very challenging

@ Hence, for an nth order system, where n > 2, we need to compute
the matrix exponential in order to get a solution for the above
system—uwe learned that in the linear algebra revision section
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Example (Case 1)

x(t) = exg, y(t) = Cx(t) = Ce*'x

@ Find the solution for these two autonomous systems separately:

b oot

aef et o[}

@ Solution:
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Case 2—Systems with Inputs

e MIMO (or SISO) LTI dynamical system:
x(t) = Ax(t)+ Bu(t),x(ty) = x¢, = given
y(t) = Cx(t)+ Du(t)

@ The to the above ODE is given by:

t
x(t) = eAlt-t)x, + / A=) Bu(r) dr

to

@ Clearly the output solution is:

y(t)=C (eA(t_tO)xto) +C (/tte ") Bu(r )dT) + Du(t)

—_— ——

zero input response

zero state response

@ Question: how do | analytically compute y(t) and x(t)?

e Answer: you need to (a) integrate and (b) compute matrix
exponentials (given A, B, C, D, x,, u(t))
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t
x(t) = eAlt-tx, + / A=) Bu(r) dr

to

y(t)=C (eA(f*ffJ)xto) +C ( / eAt=7) Bu(r) d7> + Du(t)

to

zero input response

zero state response

@ Find the solution for these two LTI systems with inputs:
1 0 1
Al = |:0 _2:| 7Bl = |:1:| 7C1

0 1 1 —1 B
A, = {O _2}732_ [_1],C2_[2 0],Xg2)—{1]7D2—1,U2(t)—2e 2t

@ Solution:

1 2], x) = [ﬂ :Di=0,u(t)=1
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Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha
IFF you want to know more ©
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