Lead Compensator

PID Controllers Design

Module 08 Controller Designs: Compensators and PIDs

Ahmad F. Taha

EE 3413: Analysis and Desgin of Control Systems

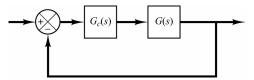
Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha

March 31, 2016

Introduction

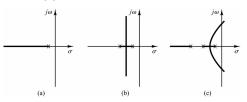
- Readings: 6.5-6.6, 8.1-8.2 Ogata; 7.6,10.3,10.5 Dorf & Bishop
- In Module 7, we learned to sketch the RL for any TF
- We saw how poles change as a function of the gain K
- 'K' was a controller a constant controller
- Many times, K as a controller is not enough
- Example: system cannot be stabilized with a choice of K-gain
- Or, settling time is still high, overshoot still bad
- Today, we'll learn how to design more complicated controllers
- **Objective:** find $G_c(s)$ such that CLTF has desired properties such as settling time, maximum overshoot,...



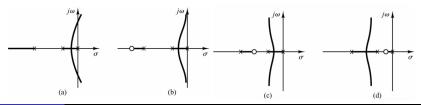
Lead Compensator

Typical RL Plots

• (a) Root-locus plot of a single-pole system; (b) root-locus plot of a two-pole system; (c) root-locus plot of a three-pole system



• (a) Root-locus plot of a three-pole system; (b), (c), and (d) root-locus plots showing effects of addition of a zero to the three-pole system.



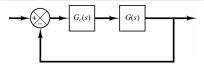
Effects of Adding Poles and Zeros on RL

- Adding poles *pulls* the RL to the **right**
- Systems become "less stable", settling is slower
- Adding zeros *pulls* the RL to the **left**
- Systems become "more stable" (this is tricky), settling is faster
- Question: Can we conclude that a compensator (controller) $G_c(s)$ should always be a combination of zeros? Since, you know, it makes system *more stable* and settling is faster?
- Not really. Why?? Because adding a zero amplifies the *high frequency noise*
- So, we can't add a zero alone (i.e., $G_c(s) = s + z$), and we can't add a pole alone either $(G_c(s) = \frac{1}{s+\rho})$. Solution?
- Solution Add a compensator of this form:

$$G_c(s) = K \frac{s+z}{s+p}$$
 — Objective: find K, z, p given certain desired properties

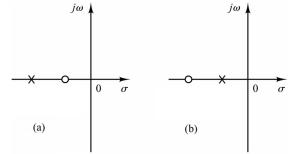
Lead Compensator

Two Controller Choices: Lead and Lag Compensators

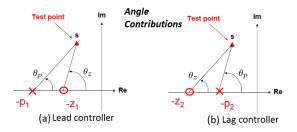


 $G_c(s) = K \frac{s+z}{s+p}$ — Objective: find K, z, p given certain desired properties

- For $G_c(s)$ above, K, z, p are all real +ve values to be found
- \Rightarrow 2 combinations: (a) lead controller; (b) lag controller:



Lead and Lag Compensators



• Lead compensator provides a +ve angle contribution:

$$G_c^{ld}(s) = K \frac{s+z}{s+p} \quad \Rightarrow \quad \angle G_c^{ld}(s) = \angle (s+z) - \angle (s+p) = \theta_z - \theta_p = \theta_{lead} > 0$$

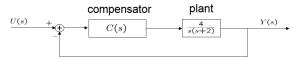
- Speeds up transients by lowering rise time & decreasing overshoots

• Lag compensator provides a -ve angle contribution:

$$G_c^{ld}(s) = K rac{s+z}{s+p} \; \Rightarrow \; \angle G_c^{ld}(s) = \angle (s+z) - \angle (s+p) = heta_z - heta_p = heta_{lag} < 0$$

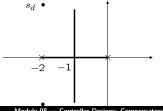
- Improves the steady-state accuracy of the system for tracking inputs
- What if p = z? That's a constant gain (pole & zero cancel out)

Lead Compensator Example



- Initially, the above system has $\zeta = 0.5$ and $\omega_n = 2$
- **Obj:** design $G_c^{ld}(s) = C(s) = K \frac{s+z}{s+n}$, such that $\zeta_d = 0.5, \omega_{nd} = 4$
- Can we do that via gain K? No, see the RL below for C(s) = K
- Hence, we can **never** reach s_d via a constant gain, need compensator

$$s_d = -\zeta_d \omega_{nd} \pm \sqrt{1 - \zeta_d^2} \omega_{nd} = -2 \pm j 2 \sqrt{3}$$



Lead Compensator Example (Cont'd)

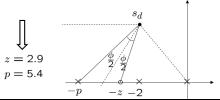
- **Objective:** design $G_c^{ld}(s) = K \frac{s+z}{s+p}$, such that $\zeta_d = 0.5, \omega_{nd} = 4$
- To find K, z, p, follow this algorithm:

0. Find
$$s_d$$
 for $s_d^2 + 2\zeta_d \omega_{nd} s_d + \omega_{nd}^2 = 0$, $s_d = -2 + j2\sqrt{3}$

1. Find angle of deficiency ϕ , as follows:

$$\theta = \angle G(s_d) = \angle G(-2 + j2\sqrt{3}) = -210 \deg \Rightarrow \phi = -180 - (\theta) = 30 \deg$$

- 2. Connect s_d to the origin OK
- 3. Draw a horizontal line to the left from s_d OK
- 4. Find the bisector of the above two lines OK
- 5. Draw 2 lines that make angles $\phi/2 \& -\phi/2$ with the bisector OK
- 6. Their intersections with the real lines are -p and -z OK



Lead Compensator

Lead Compensator Example — Finding K

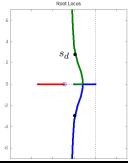
- We now know that $z = 2.9, p = 5.4 \Rightarrow G_c^{ld}(s) = C(s) = K \frac{s+2.9}{s+5.4}$
- We know that all points on the RL satisfy

$$1 + KG(s)G_c^{ld}(s) = 0 \Rightarrow 1 = |KG(s)G_c^{ld}(s)|$$

• We know for sure that s_d belongs to the RL, so solve for K:

$$|4K\frac{s_d+2.9}{s_d(s_d+2)(s_d+5.4)}| = 1 \Rightarrow K = 4.68 \Rightarrow G_c^{ld}(s) = C(s) = 4.68\frac{s+2.9}{s+5.4}$$

• Compensated RL plot:

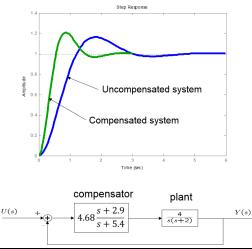


Lead Compensator

PID Controllers Design

Step Response: Old vs. New Response

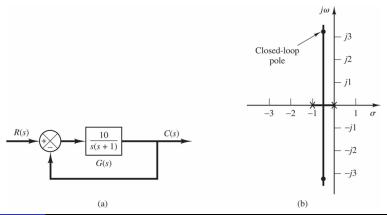
Compensated system reaches SS faster (shorter rise, settling times), although it has a higher M_p . That said, we designed the compensator according to the design specs. Design specs weren't so smart, perhaps.



Lead Compensator Example 2

• Given
$$G(s) = \frac{10}{s(s+1)}$$
, find $G_c^{ld}(s)$ such that the CLTF has $\zeta_d = 0.5$ and $\omega_{nd} = 3$

• Figures: (a) uncompensated control system (b) uncompensated root-locus plot

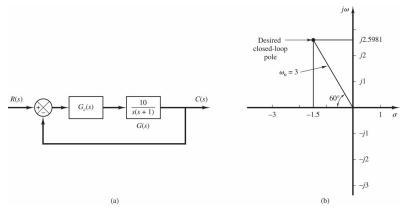


Lead Compensator

Lead Compensator Example 2 (Cont'd)

• Given
$$G(s) = \frac{10}{s(s+1)}$$
, find $G_c^{ld}(s)$ such that the CLTF has $\zeta_d = 0.5$ and $\omega_{nd} = 3$

• Figures: (a) compensated system, (b) desired closed-loop pole location

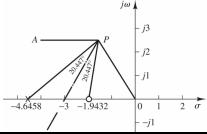


Lead Compensator Example 2 (Cont'd)

- **Objective:** design $G_c^{ld}(s) = K \frac{s+z}{s+p}$, such that $\zeta_d = 0.5, \omega_{nd} = 3$
- 0. Find s_d for $s_d^2 + 2\zeta_d \omega_{nd} s_d + \omega_{nd}^2 = 0, s_d = -1.5 \pm j2.58$
- 1. Find angle of deficiency ϕ , as follows:

 $\theta = \angle \mathsf{G}(\mathsf{s}_d) = \angle \mathsf{G}(-1.5 + j2.58) = 138 \deg \Rightarrow \phi = -180 - (138) = -318 \equiv 42 \deg$

- 2. Connect s_d to the origin OK
- 3. Draw a horizontal line to the left from s_d OK
- 4. Find the bisector of the above two lines OK
- 5. Draw 2 lines that make angles $\phi/2 \& -\phi/2$ with the bisector OK
- 6. Their intersections with the real lines are -p and -z OK

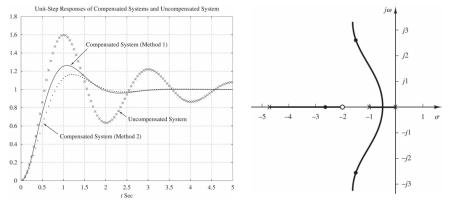


Lead Compensator

PID Controllers Design

Compensated System, Example 2

Unit-step response and RL plot for the compensated system:



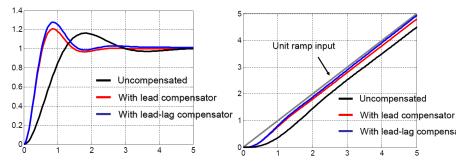
Lag, Lead-Lag Compensators

- Now that we understand lead compensators, we can discuss lag and lead-lag compensators
- Recall that lead compensators: improve transient response and stability
- But they do not typically reduce SSE
- Lag compensators $G_c^{lg}(s)$: reduce SSE, so sometimes we want smaller SSE rather than shorter rise and settling time as in a lead compensator
- **Optimal solution:** lead-lag (LL) compensator— $G_c^{\prime\prime}(s) = G_c^{\prime d}(s)G_c^{\prime g}(s)$
- LL compensators provides the benefits of both lead and lag compensators

Lead-Lag Compensators

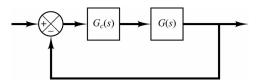
Design via Root-Locus-Intro

- Unfortunately, we don't have time to cover LL compensator design
- Design procedure is simple, please read more about it from your textbooks
- But we'll show a figure that illustrates the difference in performance:
- Left figure (step response), right figure (ramp response)



Lead Compensator

PID Control — Definitions and Basics



- Proportional Integral Derivative controller—PID control
- Without a doubt the most widely used controllers in industry today
- Bread and butter of control, 90% of control loops use PID control
- Proportional: $G_c(s) = K$, Integration: $G_c(s) = \frac{1}{T_s}$, Derivative: $G_c(s) = Ks$
- Can have combinations of the above controllers: P,I,D,PI,PD,ID,PID
- Major objectives for designing $G_c(s)$:
- 1 Stability-the most important objective: CLTF is stable
- 2 Steady-state error (SSE)-minimize this as much as we could
- 3 Time-specs— M_p , t_r , t_s , ...

Lead Compensator

PID Controller Device

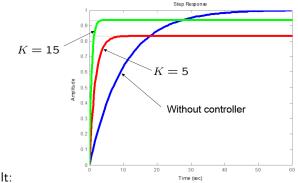
You can either use some tuning rules (which we will learn about during this module), or use an auto-tune function that figures out the parameters to a PID controller. Check http://www.omega.com/prodinfo/temperaturecontrollers.html for examples. Prices for common PID controllers range from \$20 to \$200, depending on size, quality, and performance.

Lead Compensator

PID Controllers Design

Example 1: P controller for FOS

- Assume $G(s) = \frac{1}{T_{s+1}}$ —first order system (FOS)
- We can design a P controller (i.e., $G_c(s) = K$)



Result:

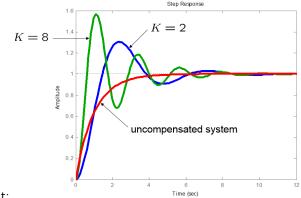
- Larger K will increase the response speed
- SSE is present no matter how large K is—recall the SSE Table ;)

Lead Compensator

PID Controllers Design

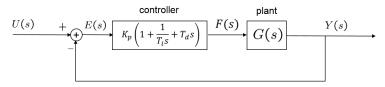
Example 2: Integral (I) controller for FOS

- Assume $G(s) = \frac{1}{Ts+1}$ —first order system (FOS)
- We can design an I controller (i.e., $G_c(s) = K/s$)



- Result:
- SSE for step input is completely eliminated
- But transients are bad—can cause instability for some K

PID Controller

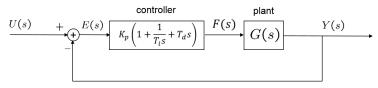


• PID (Proportional-Integral-Derivative) controller takes this form:

$$G_c(s) = K_p\left(1 + rac{1}{T_i s} + T_d s
ight)$$

- Design objective: find parameters K_p , T_i , T_d given required specs
- This process is called **PID tuning**—process of adjusting K_p , T_i , T_d
- Many different tuning rules exist
- Ziegler-Nichols Rule: first PID tuning rules (first and second method)
- After finding these parameters, input them on the PID device

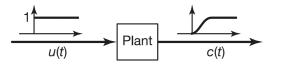
More on PID Controllers



- Proportional term, i.e., $G_c^P(s) = K_p$:
- Proportional term responds immediately to the current tracking error. Typically, however, it cannot achieve the desired tracking accuracy without excessively large gain.
- Integral term, i.e., $G'_c(s) = \frac{K_p}{T_i s}$:
- Integral term yields a zero steady-state error in tracking a step function (a constant set-point). This term is slow in response to the current tracking error.
- Derivative term, i.e., $G_c^D(s) = K_p T_d s$:
- Derivative term is effective for plants with large dead-time
- Reduces transient overshoots, but amplifies higher frequencies sensor noise

Lead Compensator

Ziegler-Nichols Rule: First Method



Step 1 Obtain plant's unit step response experimentally¹

- Unit step response is S-shaped for many plants
- Only valid if the step-response is S-shaped
- Step 2 Obtain delay time L from the experimental plot
- Step 3 Obtain time constant T from the experimental plot

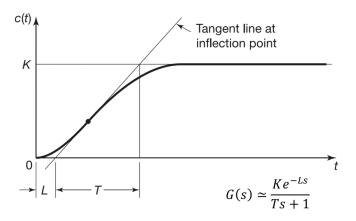
Step 4 Use tuning rule table to determine K_p , T_i , T_d given L, T (next slide)

 $^{^1 {\}rm In}$ industrial applications, control engineers usually specify the performance of the controlled system based on the system step response.

Lead Compensator

PID Controllers Design

Obtaining L, T from Experimental Plot



• Of course, this is an approximation, but you have to be accurate with your computation of *L* and *T*

Lead Compensator

PID Controllers Design

Obtaining K_p , T_i , T_d via Tuning Method 1

$$G_c(s) = K_p\left(1 + rac{1}{T_i s} + T_d s
ight)$$

Type of Controller	K _p	T _i	T _d	
Р	$\frac{T}{KL}$	œ	0	
PI	$\frac{0.9T}{KL}$	3.3 <i>L</i>	0	
PID	$1.2 \frac{T}{KL}$	2L	0.5 <i>L</i>	

 If you want a PID controller, choose the third row and compute the parameters:

$$G_{PID}(s) = G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s\right) = 0.6T \frac{\left(s + \frac{1}{L}\right)^2}{s}$$

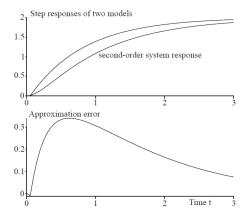
Lead Compensator

PID Controllers Design

PID Tuning, Method 1 Example

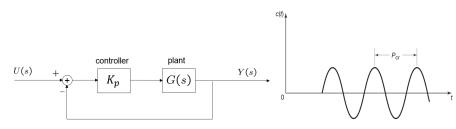
• Given a plant
$$G(s) = \frac{10}{s^2 + 6s + 5}$$
, find K, L, T first

- Given the procedure, we find that ${ ilde G}(s)pprox rac{2e^{-0.05s}}{0.8s+1}$
- Plug these values in the table to obtain $G_c(s) = G_{PID}(s)$



Lead Compensator

Ziegler-Nichols Rule: Second Method



Step 1 Set $T_i = \infty$, $T_d = 0$ (above left figure) and increase K_p until step response of the closed-loop system has sustained oscillations

- If no oscillation occurs for all values of K_p , this method is not applicable
- Step 2 Record K_{cr} (critical value of gain K_p) and P_{cr} (period of the oscillation); see above right figure
- Step 3 Use tuning rule table to determine K_p , T_i , T_d given K_{cr} , P_{cr} (next slide)

Lead Compensator

PID Controllers Design

Obtaining K_p , T_i , T_d via Tuning Method 2

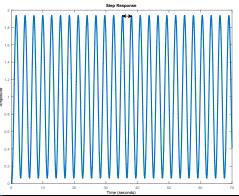
$$G_c(s) = K_p\left(1 + \frac{1}{T_i s} + T_d s\right)$$

Type of Controller	Kp	T _i	T_d	
Р	0.5 <i>K_{cr}</i>	∞	0	
PI	0.45 <i>K_{cr}</i>	$P_{cr}/1.2$	0	
PID	0.6 <i>K_{cr}</i>	$P_{cr}/2$	<i>P_{cr}</i> /8	

$$G_{PID}(s) = G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = 0.075 K_{cr} P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^2}{s}$$

Method 2 Example

- Given a plant $G(s) = \frac{1}{s(s+1)(s+5)}$, find the PID parameters using the second PID design method
- **Solution:** Experimentally, we plot the step response till we have sustained oscillations (Step 1)
- We can record $K_{cr} = 30, P_{cr} = 2.8$



Method 2 Example

• Looking at the table, we can find K_p , T_i , T_d :

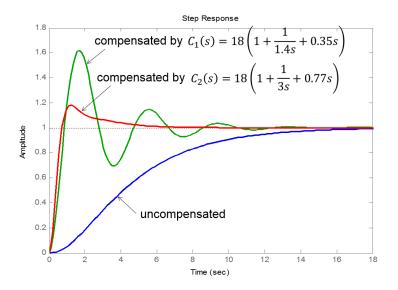
$$G_c(s) = 18\left(1 + \frac{1}{1.4s} + 0.35s\right)$$

- Note: we can find K_{cr} by applying the RH table for the CP $(s^3 + 6s^2 + 5s + K_p)$
- Then, you can find K_p that would make the CP unstable $\Rightarrow K_{cr} = K_p^{max} = 30$
- Then find the frequency ω_{cr} that solves this equation

$$(j\omega_{cr})^3 + 6(j\omega_{cr})^2 + 5j\omega_{cr} + 30 = 0 \Rightarrow \omega_{cr} \Rightarrow \omega_{cr} = \sqrt{5} \Rightarrow P_{cr} = \frac{2\pi}{\omega_{cr}} = 2.8$$

Lead Compensator

Step Response after PID Design



Lead Compensator

PID Control Summary

• We only covered one type of PID control, called Type A PID control:

$$G_{PID-A}(s) = G_c(s) = K_p\left(1 + rac{1}{T_i s} + T_d s
ight) = lpha rac{\left(s + eta
ight)^2}{s}$$

where α and β are the PID constants that depend on the plant's performance

- So, when do we use P,PI,PD, or PID control?
- Well, it depends on what you want

	SSE	Response Speed	Stability	Oscillations	Overshoot
<i>∕ K</i> _p	X	7	\searrow	\nearrow	\nearrow
$\nearrow K_i = \frac{1}{T_i}$	\searrow	\searrow	\searrow	7	\nearrow
$\nearrow K_d = T_d$	\nearrow	7	\nearrow	\searrow	\searrow

Course Progress

Modeling (5-6 Weeks)

Analysis (7-8 Weeks)

Laplace Transforms

- Transfer Functions
- Solution of ODEs
- Modeling of Systems
- Block Diagrams
- Linearization

- 1st & 2nd Order
 Systems
 - Time Response
 - Transient & Steady State
- Frequency Response
- Bode Plots
- RH Criterion
- Stability Analysis

- Root-Locus
- Design via RL, Compensators

Design

(5-6 Weeks)

- PID Control
- Modern Control
- · State-Space
- MIMO System
 Properties

Lead Compensator

PID Controllers Design

Questions And Suggestions?

Thank You!

Please visit engineering.utsa.edu/~taha IFF you want to know more ©