Module 06

Higher Order Systems, Stability Analysis \& Steady-State Errors

Ahmad F. Taha

EE 3413: Analysis and Desgin of Control Systems
Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/~taha

February 23, 2016

Module 6 Outline

(1) From FOSs \& SOSs to higher-order systems
(2) Stability of linear systems
(Routh-Hurwitz stability criterion
© System types \& steady-state tracking errors
(Reading sections: 5.4, 5.6, 5.8 Ogata, 5.6, 6.1, 6.2 Dorf and Bishop

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- So far, we analyzed the above TFs for SOSs
- What if we have a non-unit DC gain?

$$
H(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- What's $y_{\text {step }}(\infty)$? Behavior won't change as much
- What if we have a zero:

$$
H(s)=\frac{\alpha s \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- Given an extra zero, we obtain:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}+\frac{\alpha s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=H_{1}(s)+H_{2}(s)=H_{1}(s)+\frac{\alpha}{\omega_{n}^{2}} s H_{1}(s)
$$

Adding an Extra Zero

$$
H(s)=H_{1}(s)+H_{2}(s)=H_{1}(s)+\frac{\alpha}{\omega_{n}^{2}} s H_{1}(s)
$$

- Therefore, under any input (step, impulse, ramp), the response will be:

$$
y(t)=y_{1}(t)+y_{2}(t)=y_{1}(t)+\frac{\alpha}{\omega_{n}^{2}} y_{1}^{\prime}(t)
$$

- $y_{1}(t)$: unit-step response of standard SOS; Step response example
- Zero affects overshoot in the step response

$$
H(s)=\frac{s+1}{s^{2}+0.8 s+1}
$$

Higher Order Systems

- How can we analyze systems with more zeros, more poles?
- First, write the TF in this standard form:

$$
H(s)=K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}
$$

- Location of poles determines almost everything
- How many cases do we have?
(1) For distinct real poles:

$$
H(s)=\frac{\alpha_{1}}{s-p_{1}}+\cdots+\frac{\alpha_{n}}{s-p_{n}}
$$

- Unit step and impulse responses? Easy to derive

$$
y_{i m p}(t)=\alpha_{1} e^{p_{1} t}+\cdots+\alpha_{n} e^{p_{n} t}, y_{\text {step }}(t)=\beta_{0}+\beta_{1} e^{\rho_{1} t}+\cdots+\beta_{n} e^{p_{n} t}
$$

- Transients will vanish iff p_{1}, \ldots, p_{n} are negative

Mean, Complex Poles

(2) For distinct real and complex poles:

$$
H(s)=\sum_{j=1}^{q} \frac{\alpha_{j}}{s-p_{j}}+\sum_{k=1}^{r} \frac{\beta_{k} s+\gamma_{k}}{s^{2}+2 \sigma_{k} s+\omega_{k}^{2}}
$$

- You'll have to show me your PFR superpowers to obtain $\alpha_{j}, \beta_{k}, \gamma_{k}, \sigma_{k}, \omega_{k} \forall j, k$
- Unit-impulse response:

$$
y_{i m p}(t)=\sum_{j=1}^{q} \alpha_{j} e^{p_{j} t}+\sum_{k=1}^{r} c_{k} e^{-\sigma_{k} t} \sin \left(\omega_{k} t+\theta_{k}\right)
$$

- Unit-step response:

$$
y_{\text {step }}(t)=\sum_{j=1}^{q} d_{j} e^{p_{j} t}+\sum_{k=1}^{r} f_{k} e^{-\sigma_{k} t} \sin \left(\omega_{k} t+\phi_{k}\right)
$$

- Similar to the previous case, transients will vanish if all poles are in the LHP

Summary \& Important Remarks

- Each real pole p contributes to an exponential term in any response
- Each complex pair of poles contributes a modulated oscillation
- The decay of these oscillations depend on whether the real-part of the pole is negative or positive
- The magnitude of oscillations, contributions depends on residues, hence on zeros
- Dominant poles: poles that dominate any kind of output response
- Dominant poles can be real (be real ok?) or complex

Dominant Poles - Example

$$
\begin{array}{cl}
H_{1}(s)=\frac{1}{\left(s^{2}+2 s+2\right)\left(s^{2}+8 s+25\right)} & H_{2}(s)=\frac{1 / 25}{s^{2}+2 s+2} \\
p_{1,2}=-1 \pm j \quad p_{3,4}=-4 \pm j 3 & p_{1,2}=-1 \pm j
\end{array}
$$

Who Likes Stability? Who Likes Instability?

- Stability: one of the most important problems in control
- System is stable if, under bounded input, its output will converge to a finite value, i.e., transient terms will eventually vanish. Otherwise, it is unstable
- Above definition is a tricky one-we need a quantitative one
- From now on, this system is stable iff all p 's have strictly negative real parts

$$
H(s)=K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)}
$$

- If $p_{i}=0$, would the system be stable? NO, NO.

Design Problems Related to Stability

- Stability Criterion: for a given system (i.e., given $C(s), G(s)$), determine if it is stable
- Stabilization: for a given system that is unstable (i.e., poles of $G(s)$ are unstable), design $C(s)$ such as $\frac{Y(s)}{U(s)}$ is stable
- Most engineering design applications for control systems evolve around this simple, yet occasionally challenging idea
- Some systems cannot be stabilized
- For more complex $G(s)$, design of $C(s)$ is likely to be more complex
- However, this IS NOT A RULE

How to Infer Stability? Two Methods

$$
H(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}}
$$

- System, denoted by the above TF $H(s)$ is stable iff:

$$
\operatorname{roots}\left(a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=0\right) \in \mathrm{LHP}
$$

- How can we determine that? Two methods:
(1) Direct factorization, Matlab, algebra:

$$
a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=K\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)=0
$$

- That cannot be done on hands (often), need a computer
(2) Routh's Stability Criterion:
- for any polynomial of any degree, determine \# of roots in the LHP, RHP, or $j \omega$ axis without having to solve the polynomial
- Advantages: Less computations + gives discrete answers

Routh-Hurwitz Stability Criterion (RHSC)

- So, the RHSC only tells me whether a polynomial (denominator of a TF) has roots in LHP, RHP, or $j \omega$ axis, not the exact locations, which answers stability question of control systems
- The opposite is not always true!
- How does this work:
- First, if $a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$ is stable, then $a_{0}, a_{1}, \cdots, a_{n}$ have the same sign and are nonzero
- Examples: $\left(s^{2}-s+1\right)$ is not stable, $s^{4}+s^{3}+s^{2}+1$ is not stable
$-s^{4}+s^{3}+s^{2}+s+1$ is undetermined

How to Apply the RHSC?

- Objective: given $a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n} \Rightarrow$ determine if polynomial is stable
(Step 1) Determine if all coefficients of $a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$ have the same sign \& nonzero
(Step 2) If the answer to Step 1 is NO, then system is unstable
(Step 3) Arrange all the coefficients in this Routh-Array format:

s^{n}	a_{0}	a_{2}
s^{n-1}	a_{1}	a_{3}^{\downarrow}
s^{n-2}	b_{1}	b_{2}
s^{n-3}	c_{1}	c_{2}
\vdots		
s^{2}	e_{1}	e_{2}
s^{1}	f_{1}	
s^{0}	g_{1}	

RHSC Algorithm — 2

s^{n}	a_{0}	a_{2}	a_{4}	a_{6}
s^{n-1}	a_{1}	a_{3}	a_{5}	a_{7}
s^{n-2}	b_{1}	b_{2}	b_{3}	b_{4}
s^{n-3}	c_{1}	c_{2}	c_{3}	c_{4}
s^{2}	e_{1}	e_{2}		
s^{1}	f_{1}			
s^{0}	g_{1}			

(Step 4) \# RHP roots $=$ \# of sign changes in the first column
(Step 5) Stability determination: $a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$ is stable if the first column has no sign change

RHSC Example - 1

- Determine the stability of:

$$
s^{4}+2 s^{3}+3 s^{2}+4 s+5=0
$$

- Apply the RHSC:

s^{4}	1	3	5
s^{3}	2	4	0
s^{2}	$\frac{2 \cdot 3-4 \cdot 1}{2}=1$	$\frac{2 \cdot 5-1 \cdot 0}{2}=5$	
s^{1}	$\frac{1 \cdot 4-2 \cdot 5}{1}=-6$		
s^{0}	$=?$		

(S. 4-5) \# RHP roots $=$ \# of sign changes $=2 \Rightarrow$ two RHP roots \Rightarrow unstable polynomial

RHSC Example - 2

- What is a condition on $a_{0}, a_{1}, a_{2}, a_{3}$ such that the polynomial is stable (all are +ve)?

$$
a_{0} s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0
$$

- Apply the RHSC:

s^{3}		
s^{2}	a_{0}	a_{2}
s^{1}		
s^{0}		

(S. 4-5) Need no sign change in the first column \Rightarrow need $a_{1} a_{2}>a_{0} a_{3}$, since $a_{i}>0 \forall i$

RHSC Example - 2

- Given the above unity-feedback system, and $G(s)=\frac{K}{s\left(s^{2}+10 s+20\right)}$, find range of K s.t. the CLTF is stable
- Solution: first, find CLTF; $H(s)=\frac{K}{s^{3}+10 s^{2}+20 s+K}$
- Apply the RHSC: Steps 1 and 2; $K>0$ and:

s^{3}	1	20
s^{2}	10	K
s^{1}	$-\frac{1}{10}(K-200)$	
s^{0}	K	

(S. 4-5) Need no sign change in the first column \Rightarrow need $K<200$ and $K>0, \Rightarrow 0<200<K$

Special Case 1

- Sign of 0 ? What if 1 of the entries in the first column is 0 ?
- Solution: replace 0 with ϵ, where ϵ is a small + ve number
- Case 1: if the sign of the coefficient above the zero (ϵ) is the same as the sign under $\epsilon \Rightarrow$ there are pair of complex roots
- Example: $s^{3}+2 s^{2}+s+2=0$

s^{3}	1	1
s^{2}	2	2
s^{1}	$0 \approx \epsilon$	
s^{0}	2	

- Case 2: if the sign of the coefficients above and below ϵ change \Rightarrow there is a sign change \Rightarrow apply Step 5
- Example: $s^{3}-3 s+2=(s-1)^{2}(s+2)=0$

Special Case $2+$ Example

- What if an entire row is zero? Then we have:
- (a) two real roots with equal magnitudes and opposite signs and/or (b) two complex conjugate roots
- Solution illustrated with this example:
- Example: $p(s)=s^{5}+5 s^{4}+11 s^{3}+23 s^{2}+28 s+12=0$

s^{5}	1	11	28
s^{4}	5	23	12
s^{3}	6.4	25.6	
s^{2}	3	12	
s^{1}	θ	θ	
s^{1}	6	0	
s^{0}	12		

old row, define aux. polynomial : $P(s)=3 s^{2}+12$ new row, define aux. polynomial : $P^{\prime}(s)=6 s+0$
(Step 4) Find roots of auxiliary polynomial: $3 s^{2}+12=0 \Rightarrow p_{1,2}= \pm j 2$
(Step 5) $p_{1,2}$ are both roots for the original polynomial
(Step 6) Count sign changes: none, hence no additional RHP roots

Another Example

- Example: $p(s)=s^{5}+2 s^{4}+24 s^{3}+48 s^{2}-25 s-50=0$

s^{5}	1	24	-25	
s^{4}	2	48	-50	
5^{3}	θ	θ		old row, define aux. polynomial : $P(s)=2 s^{4}+48 s^{2}-50$
s^{3}	8	96		new row, define aux. polynomial : $P^{\prime}(s)=8 s^{3}+96$
s^{2}	24	-50		
s^{1}	112.7	0		
s^{0}	-50			

(Step 4) Find roots of auxiliary polynomial:

$$
2 s^{4}+48 s^{2}-50=0 \Rightarrow p_{1,2,3,4}= \pm j 5, \pm 1
$$

(Step 5) p_{3} in RHP, then at least one RHP pole
(Step 6) Count sign changes: once, hence one more additional RHP root

- Conclusion: one RHP pole - verification:

$$
p(s)=(s+1)(s-1)(s+j 5)(s-j 5)(s+2)=0
$$

Tracking Error

- What is tracking? Why is tracking important?
- Tracking is an important task in control systems
* Objective: track a certain reference signal (reference (t) or $u(t)$)
- Often, ref. (t) is a step function or piecewise constant signals
- Tracking is typically achieved via unity-feedback control systems
- Definition 1: tracking error $=e(t)=u(t)-y(t)$
- Definition 2: stead-state error $(S S E)=e_{s s}=e(\infty)$
- Wait, we can apply FVT here $\Rightarrow e_{s s}=\lim _{s \rightarrow 0} s E(s)$
- Important point: SSE only defined if system is stable
- Target: study SSE for a unity-feedback system

What Inputs Can We Consider?

Unit step input:

$$
u(t)=1, \quad t \geq 0 \quad \Rightarrow U(s)=\frac{1}{s}
$$

Unit ramp input:

$$
u(t)=t, \quad t \geq 0 \quad \Rightarrow U(s)=\frac{1}{s^{2}}
$$

Unit acceleration input: $\quad u(t)=\frac{t^{2}}{2}, \quad t \geq 0 \quad \Rightarrow U(s)=\frac{1}{s^{3}}$
In general:

$$
u(t)=\frac{t^{k}}{k!}, \quad t \geq 0 \quad \Rightarrow U(s)=\frac{1}{s^{k+1}}
$$

- Many system inputs can be approximated with scaled polynomials
- How can we do that? polyfit on MATLAB: http://www.mathworks.com/help/matlab/ref/polyfit.html
- If your system can track high order inputs (e.g., $u(t)=t^{10}+5 t^{4}-7$), then your system has an excellent ability in tracking arbitrary inputs

System Type (More Definitions)

- A unity-feedback system with an OLTF

$$
G(s)=\frac{K\left(T_{a} s+1\right) \cdots\left(T_{m} s+1\right)}{s^{N}\left(T_{b} s+1\right) \cdots\left(T_{n} s+1\right)}
$$

is called type \mathbf{N} where \mathbf{N} is the \# of poles of $G(s)$ at $s=0$

- Examples
- Goal: find SSE for different system types \& test inputs (unit step, impulse, ramp)

SSE for a Unit-Step Input

$$
e_{s s}=\lim _{s \rightarrow 0} s E(s), \text { if system is stable }
$$

- We now want to find $e_{s s}$ for any given $G(s)$
- Recall (from Module 04 and Exam I) that $\frac{E(s)}{U(s)}=\frac{1}{1+G(s)}$
- Then, what's $e_{s s}=e(\infty)$ if $u(t)=1$?
- Answer: $e_{s s}=\frac{1}{1+K_{p}}, K_{p}=\lim _{s \rightarrow 0} G(s)$
- K_{p} is called the static position error constant
- What would $e_{s s}$ for Type 0 systems? Type 1?
- Answer: Type 0 , it's constant (above), Types 1 and above, it's 0
- Conclusion 1: Type 0 systems track unit step with finite SSE
- Conclusion 2: Type 1 or higher systems track unit step with 0 SSE

SSE for a Unit-Step Input

$$
e_{s s}=\lim _{s \rightarrow 0} s E(s) \quad, \quad \frac{E(s)}{U(s)}=\frac{1}{1+G(s)}
$$

- Then, what's $e_{s s}=e(\infty)$ if $u(t)=t$?
- Answer: $e_{s s}=\frac{1}{K_{v}}, K_{v}=\lim _{s \rightarrow 0} s G(s)$
- K_{v} is called the static velocity error constant
- What would $e_{s s}$ for Type 0 systems? Type 1?
- Answer: Type 0, it's infinity! Why?
- Conclusion 1: Type 0 systems cannot track unit ramp input
- Conclusion 2: Type 1 systems track unit ramp step with finite SSE
- Conclusion 3: Type 2 or higher systems track unit ramp unit step with 0 SSE

Summary of the Results

	Unit step input $\mathrm{u}(\mathrm{t})=1$	Unit ramp input $\mathrm{u}(\mathrm{t})=\mathrm{t}$	Acceleration input $\mathrm{u}(\mathrm{t})=\mathrm{t}^{2} / 2$
Type 0 systems	$1+K_{p}$ $K_{p}=G(0)$	∞	∞
Type 1 systems	0	$\frac{1}{K_{v}}$	
$K_{v}=\lim _{s \rightarrow 0} s G(s)$	∞		
Type 2 systems	0	0	$\frac{1}{K_{a}}$
	0	$K_{a}=\lim _{s \rightarrow 0} s^{2} G(s)$	

- You should not memorize any of these results - you should be able to derive all of these 9 results
- Before you compute anything, verify that the system is stable

Design Example 1

- For the above given system, and assuming that $u(t)=1$, find K such that the SSE is as small as possible
- Answer:

Design Example 2

- Assume that $u(t)=t$, find K such that the SSE is zero
- Answer: First, find the overall transfer function:

$$
H(s)=\frac{C(s)}{R(s)}=(1+k s) \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- Now, find $E(s)$ then $e_{s s}$ via FVT

$$
\begin{gathered}
E(s)=R(s)-C(s)=\left(\frac{s^{2}+2 \zeta \omega_{n} s-\omega_{n}^{2} k s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\right) R(s)=\left(\frac{s^{2}+2 \zeta \omega_{n} s-\omega_{n}^{2} k s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\right) \frac{1}{s^{2}} \\
\Rightarrow e_{s s}=e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s\left(\frac{s^{2}+2 \zeta \omega_{n} s-\omega_{n}^{2} k s}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\right) \frac{1}{s^{2}}=\frac{2 \zeta \omega_{n}-\omega_{n}^{2} k}{\omega_{n}^{2}} \\
\text { We want } e_{s s}=0 \Rightarrow \text { set } k=\frac{2 \zeta}{\omega_{n}} \text { to achieve that }
\end{gathered}
$$

Design Example 3

- For the above given system, and assuming that

$$
G(s)=\frac{K}{s^{3}+s^{2}+2 s-4},
$$

obtain the SSE for unit step input when $K=1,5$, or 10 .
(1) First, we have to find the range for K s.t. system (CLTF) is stable
(2) Routh-Array for $s^{3}+s^{2}+2 s+K-4=0$:

$$
\begin{array}{c||ccc}
s^{3} \\
s^{2} \\
s^{1} \\
s^{0} & \begin{array}{cc}
1 & 2 \\
1 & K-4 \\
& 6-K
\end{array} & \Rightarrow \text { system is stable if } 4<K<6 \\
\hline
\end{array}
$$

(3) \therefore for $K=1,10$, SSE doesn't exist. System is Type $0 \Rightarrow$ for $K=5$,

SSE is: $e_{s s}=\frac{1}{1+G(0)}=-4$

Design Example 4

- For the above given system, assume that

$$
G(s)=\frac{1}{s^{3}+s^{2}+2 s-0.5}, C(s)=1+\frac{K}{s} .
$$

For $K \geq 0$, obtain the range of K such that the CLTF is stable

- Do this problem at home
- Solution: $0<K<0.75$

Course Progress

Modeling (5-6 Weeks)

- Laplace Transforms
- Transfer Functions
- Solution of ODEs
- Modeling of Systems
- Block Diagrams
- Linearization

Analysis (7-8 Weeks)

- $1^{\text {st }} \& 2^{\text {nd }}$ Order Systems
- Time Response
- Transient \& Steady State
- Frequency Response
- Bode Plots
- RH Criterion
- Stability Analysis

Design (5-6 Weeks)

- Root-Locus
- Modern Control
- State-Space
- MIMO System Properties

Questions And Suggestions?

Please visit engineering.utsa.edu/~taha IFF you want to know more $)^{-}$

