Module 06 Higher Order Systems, Stability Analysis & Steady-State Errors

Ahmad F. Taha

EE 3413: Analysis and Desgin of Control Systems

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha

February 23, 2016

©Ahmad F. Taha

Module 6 Outline

- From FOSs & SOSs to higher-order systems
- Stability of linear systems
- South-Hurwitz stability criterion
- System types & steady-state tracking errors
- Seading sections: 5.4, 5.6, 5.8 Ogata, 5.6, 6.1, 6.2 Dorf and Bishop

Nonstandard SOSs

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- So far, we analyzed the above TFs for SOSs
- What if we have a non-unit DC gain?

$$H(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- What's $y_{step}(\infty)$? Behavior won't change as much
- What if we have a zero:

$$H(s) = \frac{\alpha s \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

Given an extra zero, we obtain:

 $H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{\alpha s}{s^2 + 2\zeta\omega_n s + \omega_n^2} = H_1(s) + H_2(s) = H_1(s) + \frac{\alpha}{\omega_n^2} s H_1(s)$

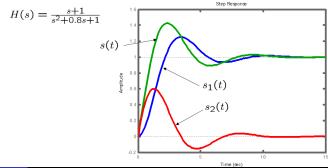
Adding an Extra Zero

$$H(s)=H_1(s)+H_2(s)=H_1(s)+rac{lpha}{\omega_n^2}sH_1(s)$$

• Therefore, under any input (step, impulse, ramp), the response will be:

$$y(t) = y_1(t) + y_2(t) = y_1(t) + \frac{\alpha}{\omega_n^2} y_1'(t)$$

- $y_1(t)$: unit-step response of standard SOS; Step response example
- Zero affects overshoot in the step response



- How can we analyze systems with more zeros, more poles?
- First, write the TF in this standard form:

$$H(s) = K \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$

- Location of poles determines almost everything
- How many cases do we have?
- (1) For distinct real poles:

$$H(s) = \frac{\alpha_1}{s-p_1} + \cdots + \frac{\alpha_n}{s-p_n}$$

- Unit step and impulse responses? Easy to derive

$$y_{imp}(t) = \alpha_1 e^{p_1 t} + \dots + \alpha_n e^{p_n t}$$
, $y_{step}(t) = \beta_0 + \beta_1 e^{p_1 t} + \dots + \beta_n e^{p_n t}$

- Transients will vanish iff p_1, \ldots, p_n are negative

Mean, Complex Poles

(2) For distinct real and complex poles:

$$H(s) = \sum_{j=1}^{q} \frac{\alpha_j}{s - p_j} + \sum_{k=1}^{r} \frac{\beta_k s + \gamma_k}{s^2 + 2\sigma_k s + \omega_k^2}$$

- You'll have to show me your PFR superpowers to obtain $\alpha_j, \beta_k, \gamma_k, \sigma_k, \omega_k \ \forall j, k$
- Unit-impulse response:

$$y_{imp}(t) = \sum_{j=1}^{q} \alpha_j e^{p_j t} + \sum_{k=1}^{r} c_k e^{-\sigma_k t} \sin(\omega_k t + \theta_k)$$

- Unit-step response:

$$y_{step}(t) = \sum_{j=1}^{q} d_j e^{p_j t} + \sum_{k=1}^{r} f_k e^{-\sigma_k t} \sin(\omega_k t + \phi_k)$$

- Similar to the previous case, transients will vanish if all poles are in the LHP

©Ahmad F. Taha

Summary & Important Remarks

- Each real pole p contributes to an exponential term in any response
- Each complex pair of poles contributes a modulated oscillation
- The decay of these oscillations depend on whether the real-part of the pole is negative or positive
- The magnitude of oscillations, contributions depends on residues, hence on zeros
- Dominant poles: poles that dominate any kind of output response
- Dominant poles can be real (be real ok?) or complex

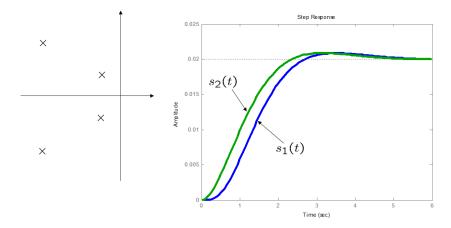
Stability Analysis

Dominant Poles — Example

$$H_1(s) = \frac{1}{(s^2 + 2s + 2)(s^2 + 8s + 25)}$$
$$p_{1,2} = -1 \pm j \qquad p_{3,4} = -4 \pm j3$$

1

$$H_2(s) = \frac{1/25}{s^2 + 2s + 2}$$
$$p_{1,2} = -1 \pm j$$



ligher	Order	Systems
0000	00	

Who Likes Stability? Who Likes Instability?

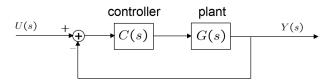
- Stability: one of the most important problems in control
- System is stable if, under bounded input, its output will converge to a finite value, i.e., transient terms will eventually vanish. Otherwise, it is unstable
- Above definition is a tricky one—we need a quantitative one
- From now on, this system is **stable iff** all *p*'s have **strictly negative** real parts

$$H(s) = K \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$

• If $p_i = 0$, would the system be stable? **NO**, **NO**.

Stability Analysis

Design Problems Related to Stability



- Stability Criterion: for a given system (i.e., given C(s), G(s)), determine if it is stable
- **Stabilization**: for a given system that is unstable (i.e., poles of G(s) are unstable), design C(s) such as $\frac{Y(s)}{U(s)}$ is stable
- Most engineering design applications for control systems evolve around this simple, yet occasionally challenging idea
- Some systems cannot be stabilized
- For more complex G(s), design of C(s) is likely to be more complex
- However, this IS NOT A RULE

Stability Analysis

Steady-State Errors

How to Infer Stability? Two Methods

ł

$$H(s) = rac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$

• System, denoted by the above TF H(s) is stable iff:

$$roots(a_0s^n + a_1s^{n-1} + \cdots + a_n = 0) \in LHP$$

- How can we determine that? Two methods:
- (1) Direct factorization, Matlab, algebra:

$$a_0s^n + a_1s^{n-1} + \cdots + a_n = K(s - p_1)(s - p_2) \cdots (s - p_n) = 0$$

- That cannot be done on hands (often), need a computer
- (2) Routh's Stability Criterion:
 - for any polynomial of any degree, determine # of roots in the LHP, RHP, or $j\omega$ axis without having to solve the polynomial
 - Advantages: Less computations + gives discrete answers

Higher	Order	Systems
0000	00	

Routh-Hurwitz Stability Criterion (RHSC)

- So, the RHSC only tells me whether a polynomial (denominator of a TF) has roots in LHP, RHP, or $j\omega$ axis, not the exact locations, which answers stability question of control systems
- The opposite is not always true!
- How does this work:
- First, if $a_0s^n + a_1s^{n-1} + \cdots + a_n$ is stable, then a_0, a_1, \cdots, a_n have the same sign **and** are nonzero
- Examples: $(s^2 s + 1)$ is not stable, $s^4 + s^3 + s^2 + 1$ is not stable
- $s^4 + s^3 + s^2 + s + 1$ is undetermined

How to Apply the RHSC?

- Objective: given a₀sⁿ + a₁sⁿ⁻¹ + · · · + a_n ⇒ determine if polynomial is stable
- (Step 1) Determine if all coefficients of $a_0s^n + a_1s^{n-1} + \cdots + a_n$ have the same sign & nonzero
- (Step 2) If the answer to Step 1 is NO, then system is unstable
- (Step 3) Arrange all the coefficients in this *Routh-Array* format:

RHSC Algorithm — 2

		1			
s^n	a_0	a_2	a_4	a_6	
s^{n-1}	a_1	a_3	a_5	a_7	
s^{n-2}	b_1	b_2	b_3	b_4	
<i>sn</i> -3	c_1	c_2	c_{3}	c_4	•••
:					
s^2	e_1	e_2			
s^1	f_1				
s^0	g_1				
		1			

(Step 4) # RHP roots = # of sign changes in the first column

(Step 5) Stability determination: $a_0s^n + a_1s^{n-1} + \cdots + a_n$ is stable if the first column has no sign change

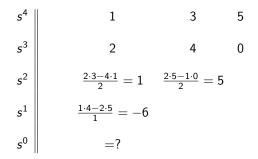
ligher	Order	Systems
0000	00	

RHSC Example — 1

• Determine the stability of:

$$s^4 + 2s^3 + 3s^2 + 4s + 5 = 0$$

• Apply the RHSC:



(S. 4–5) # RHP roots = # of sign changes = 2 \Rightarrow two RHP roots \Rightarrow unstable polynomial

Stability Analysis

Steady-State Errors

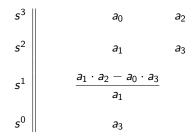
RHSC Example — 2

Higher Order Systems

• What is a condition on a_0, a_1, a_2, a_3 such that the polynomial is stable (all are +ve)?

$$a_0s^3 + a_1s^2 + a_2s + a_3 = 0$$

• Apply the RHSC:



(S. 4–5) Need no sign change in the first column \Rightarrow need $a_1a_2 > a_0a_3$, since $a_i > 0 \forall i$

Stability Analysis

Steady-State Errors

RHSC Example — 2

Higher Order Systems

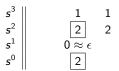
- Given the above unity-feedback system, and $G(s) = \frac{K}{s(s^2 + 10s + 20)}$, find range of K s.t. the CLTF is stable
- Solution: first, find CLTF; $H(s) = \frac{K}{s^3 + 10s^2 + 20s + K}$
- Apply the RHSC: Steps 1 and 2; K > 0 and:

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} = \begin{vmatrix} 1 & 20 \\ 10 & K \\ -\frac{1}{10}(K - 200) \\ K \end{vmatrix}$$

(S. 4–5) Need no sign change in the first column \Rightarrow need K < 200 and K > 0, $\Rightarrow \boxed{0 < 200 < K}$

Special Case 1

- Sign of 0? What if 1 of the entries in the first column is 0?
- **Solution**: replace 0 with ϵ , where ϵ is a small +ve number
- Case 1: if the sign of the coefficient above the zero (ε) is the same as the sign under ε ⇒ there are pair of complex roots
- **Example**: $s^3 + 2s^2 + s + 2 = 0$



- Case 2: if the sign of the coefficients above and below ϵ change \Rightarrow there is a sign change \Rightarrow apply Step 5
- **Example**: $s^3 3s + 2 = (s 1)^2(s + 2) = 0$

$$\begin{array}{c|c} s^{3}\\ s^{2}\\ s^{1}\\ s^{0} \end{array} \qquad \begin{array}{c} \hline 1 \\ 0 \approx \epsilon \\ -3 - \frac{2}{\epsilon}\\ 2 \end{array}$$

Special Case 2 + Example

- What if an entire row is zero? Then we have:
- (a) two real roots with equal magnitudes and opposite signs and/or
 (b) two complex conjugate roots
- Solution illustrated with this example:
- **Example**: $p(s) = s^5 + 5s^4 + 11s^3 + 23s^2 + 28s + 12 = 0$

s ⁵	1	11	28	
s ⁴	5	23	12	
s ³	6.4	25.6		
s ²	3	12		
5 1	Ð	θ		old row, define aux. polynomial : $P(s) = 3s^2 + 12$
s ¹	6	0		new row, define aux. polynomial : $P'(s) = 6s + 0$
s ⁰	12			

(Step 4) Find roots of auxiliary polynomial: $3s^2 + 12 = 0 \Rightarrow p_{1,2} = \pm j2$ (Step 5) $p_{1,2}$ are both roots for the original polynomial (Step 6) Count sign changes: none, hence no additional RHP roots

Higher Order Systems

Higher Order Systems	Stability Analysis 000000000●	Steady-State Errors
Another Examp	ble	
• Example: <i>p</i>	$p(s) = s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 =$	· 0
s^{5} 1 24	-25	

S ²	1	24	-25	
s ⁴	2	48	-50	
5 3	θ	Ð		old row, define aux. polynomial : $P(s) = 2s^4 + 48s^2 - 50$
s ³	8	96		new row, define aux. polynomial : $P'(s) = 8s^3 + 96$
s ²	24	-50		
s ¹	112.7	0		
s ⁰	-50			

(Step 4) Find roots of auxiliary polynomial: $2s^4 + 48s^2 - 50 = 0 \Rightarrow p_{1,2,3,4} = \pm j5, \pm 1$

(Step 5) p_3 in RHP, then at least one RHP pole

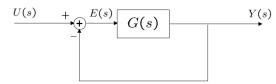
(Step 6) Count sign changes: once, hence one more additional RHP root

• Conclusion: one RHP pole — verification:

$$p(s) = (s+1)(s-1)(s+j5)(s-j5)(s+2) = 0$$

Tracking Error

- What is tracking? Why is tracking important?
- Tracking is an important task in control systems
- * Objective: track a certain reference signal (reference(t) or u(t))
- Often, ref.(t) is a step function or piecewise constant signals
- Tracking is typically achieved via unity-feedback control systems
- **Definition 1:** tracking error = e(t) = u(t) y(t)
- **Definition 2:** stead-state error (SSE) = $e_{ss} = e(\infty)$
- Wait, we can apply FVT here $\Rightarrow \boxed{e_{ss} = \lim_{s \to 0} sE(s)}$
- Important point: SSE only defined if system is stable
- Target: study SSE for a unity-feedback system

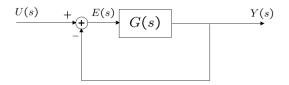


What Inputs Can We Consider?

- Unit step input: $u(t) = 1, t \ge 0 \Rightarrow U(s) = \frac{1}{s}$
- Unit ramp input: $u(t) = t, t \ge 0 \Rightarrow U(s) = \frac{1}{s^2}$
- Unit acceleration input: $u(t) = \frac{t^2}{2}, \quad t \ge 0 \quad \Rightarrow U(s) = \frac{1}{s^3}$
- In general: $u(t) = \frac{t^k}{k!}, \quad t \ge 0 \quad \Rightarrow U(s) = \frac{1}{s^{k+1}}$
- Many system inputs can be approximated with scaled polynomials
- How can we do that? polyfit on MATLAB: http://www.mathworks.com/help/matlab/ref/polyfit.html
- If your system can track high order inputs (e.g., $u(t) = t^{10} + 5t^4 - 7$), then your system has an excellent ability in tracking *arbitrary inputs*

Stability Analysis

System Type (More Definitions)



• A unity-feedback system with an OLTF

$$G(s) = \frac{K(T_as+1)\cdots(T_ms+1)}{s^N(T_bs+1)\cdots(T_ns+1)}$$

is called type N where N is the # of poles of G(s) at s = 0

- Examples
- Goal: find SSE for different system types & test inputs (unit step, impulse, ramp)

SSE for a Unit-Step Input

$$e_{ss} = \lim_{s \to 0} sE(s), \ \textit{if system is stable}$$

- We now want to find e_{ss} for any given G(s)
- Recall (from Module 04 and Exam I) that $\frac{E(s)}{U(s)} = \frac{1}{1 + G(s)}$
- Then, what's $e_{ss} = e(\infty)$ if u(t) = 1?

• Answer:
$$e_{ss} = \frac{1}{1 + K_p}$$
, $K_p = \lim_{s \to 0} G(s)$

- K_p is called the static position error constant
- What would e_{ss} for Type 0 systems? Type 1?
- Answer: Type 0, it's constant (above), Types 1 and above, it's 0
- Conclusion 1: Type 0 systems track unit step with finite SSE
- Conclusion 2: Type 1 or higher systems track unit step with 0 SSE

SSE for a Unit-Step Input

$$e_{ss} = \lim_{s \to 0} sE(s)$$
 , $\frac{E(s)}{U(s)} = \frac{1}{1+G(s)}$

• Then, what's
$$e_{ss} = e(\infty)$$
 if $u(t) = t$?

• Answer:
$$e_{ss} = \frac{1}{K_v}$$
, $K_v = \lim_{s \to 0} sG(s)$

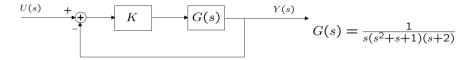
- K_v is called the static velocity error constant
- What would e_{ss} for Type 0 systems? Type 1?
- Answer: Type 0, it's infinity! Why?
- Conclusion 1: Type 0 systems cannot track unit ramp input
- Conclusion 2: Type 1 systems track unit ramp step with finite SSE
- **Conclusion 3:** Type 2 or higher systems track unit ramp unit step with 0 SSE

Summary of the Results

	Unit step input u(t)=1	Unit ramp input u(t)=t	Acceleration input u(t)=t ² /2
Type 0 systems	$\frac{1}{1+K_p}$ $K_p = G(0)$	∞	∞
Type 1 systems	0	$\frac{1}{K_v}$ $K_v = \lim_{s \to 0} sG(s)$	∞
Type 2 systems	0	0	$\frac{1}{K_a}$ $K_a = \lim_{s \to 0} s^2 G(s)$

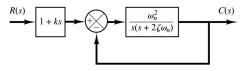
- You should not memorize any of these results you should be able to derive all of these 9 results
- Before you compute anything, verify that the system is stable

Design Example 1



- For the above given system, and assuming that u(t) = 1, find K such that the SSE is as small as possible
- Answer:

Design Example 2



- Assume that u(t) = t, find K such that the SSE is zero
- Answer: First, find the overall transfer function:

$$H(s) = \frac{C(s)}{R(s)} = (1 + ks)\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

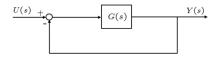
• Now, find
$$E(s)$$
 then e_{ss} via FVT

$$E(s) = R(s) - C(s) = \left(\frac{s^2 + 2\zeta\omega_n s - \omega_n^2 ks}{s^2 + 2\zeta\omega_n s + \omega_n^2}\right) R(s) = \left(\frac{s^2 + 2\zeta\omega_n s - \omega_n^2 ks}{s^2 + 2\zeta\omega_n s + \omega_n^2}\right) \frac{1}{s^2}$$

$$\Rightarrow e_{ss} = e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s\left(\frac{s^2 + 2\zeta\omega_n s - \omega_n^2 ks}{s^2 + 2\zeta\omega_n s + \omega_n^2}\right) \frac{1}{s^2} = \frac{2\zeta\omega_n - \omega_n^2 k}{\omega_n^2}$$
We want $e_{ss} = 0 \Rightarrow set k = \frac{2\zeta}{s}$ to achieve that

 ω_n

Design Example 3



• For the above given system, and assuming that

$$G(s)=\frac{K}{s^3+s^2+2s-4},$$

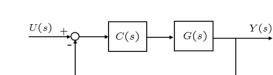
obtain the SSE for unit step input when K = 1, 5, or 10.

(1) First, we have to find the range for K s.t. system (CLTF) is stable
 (2) Routh-Array for s³ + s² + 2s + K - 4 = 0:

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 1 & K-4 \\ 6-K \\ K-4 \end{vmatrix} \Rightarrow \text{ system is stable if } \boxed{4 < K < 6}$$

$$3) \therefore \text{ for } K = 1, 10, \text{ SSE doesn't exist. System is Type } 0 \Rightarrow \text{ for } K = 5$$

$$SSE \text{ is: } e_{ss} = \frac{1}{1+G(0)} = -4$$



• For the above given system, assume that

$$G(s) = rac{1}{s^3 + s^2 + 2s - 0.5}, \ C(s) = 1 + rac{K}{s}.$$

For $K \ge 0$, obtain the range of K such that the CLTF is stable

- Do this problem at home
- Solution: 0 < *K* < 0.75

Course Progress

Analysis (7-8 Weeks)

Laplace Transforms

- Transfer Functions
- Solution of ODEs
- Modeling of Systems
- Block Diagrams
- Linearization

- 1st & 2nd Order
 Systems
 - Time Response
 - Transient & Steady State
- Frequency Response
- Bode Plots
- RH Criterion
- Stability Analysis

- Root-Locus
- Modern Control

Design

(5-6 Weeks)

- State-Space
- MIMO System Properties

Stability Analysis

Steady-State Errors

Questions And Suggestions?

Thank You!

Please visit

engineering.utsa.edu/~taha IFF you want to know more ©