Second Order Systems

Time Specs of Systems

Module 05 System Analysis & First and Second Order Dynamical Systems

Ahmad F. Taha

EE 3413: Analysis and Desgin of Control Systems

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha

February 11, 2016

CAhmad F. Taha

Module 5 Outline

- General linear systems analysis
- Responses to different test signals
- First order systems & properties
- Second order systems & properties
- Seading sections: 5.1–5.5 Ogata, 5.1–5.4 Dorf and Bishop

What have we done so far?					
00000	000000	0000000000000000	000000		
Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems		

- Well...So far, we know how to model a dynamical system
- + Reduce blocks to a single transfer function
- Module's goal: analyze + characterize input-output behavior
- Simple idea: want to know how your system is performing?
- Yes! Well, excite it with different test inputs \Rightarrow study the response

ntroduction	to	Classes	of	System	Responses	
000000						

Second Order Systems

Time Specs of Systems

Test Inputs

- Impulse input: $u(t) = \delta(t)$, Output: impulse-response, $y_i(t) = \mathcal{L}^{-1}[H(s)] = h(t)$
- Step input: $u(t) = 1^+(t)$, Output: step-response, $y_s(t) = ?$
- Step input characterizes system's ability to track sudden input changes
- Solution Ramp input: u(t) = t, Output: ramp-response, $y_r(t) = ?$
- Ramp input characterizes system's ability to track varying input
- Why are these important? How is this useful? Relationship between them:

Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems
000000	000000	000000000000000	000000
Example			

- First, we find the overall transfer function, H(s)
- Solution:

Introduction to Classes of System Responses 000000 Second Order Systems 0000000 Second Second Order Systems 000000 Second Second Order Systems 000000 Second Second Order Systems 000000 Second S

Transient Vs. Steady State Responses

- Any output for linear system is decomposed of: $y(t) = y_{ss}(t) + y_{tr}(t)$
- y_{ss}(t): stead-state response signifies the system's ability to eventually track input signals after few seconds
- $y_{tr}(t)$: transient response path the output took to reach SS
- Overly oscillatory $y_{tr}(t)$ is usually bad for systems. Why?
- Slow transient response is typically undesirable. Why?
- Example:

- Stable system: step response converges to a finite value OR
- Impulse response converges to ...?
- Unstable system: step response output doesn't converge
- Example:

Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems
First Order Systems			

- What's the meaning of first order systems?
- They're characterized by this TF:

$$H(s) = rac{Y(s)}{U(s)} = rac{1}{Ts+1}, \ \ T = ext{time constant}$$

- Can we derive the ODE related to the input and output?
- What happens if T < 0? T > 0?
- What happens when T varies? For T > 0:
- Larger $T \Rightarrow$ slower decay (larger time-constant)
- Smaller $T \Rightarrow$ faster decay (smaller time-constant)

First Order System: Stability Analysis & Impulse Response

- For smaller T, system will go to zero faster
- Plots show the impulse response, h(t)

System is stable if T>0, and unstable if T<0

©Ahmad F. Taha

Module 05 — System Analysis & First and Second Order Dynamical Systems

Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems
Step Response			

$$\underbrace{U(s)}_{Ts+1} \xrightarrow{Y(s)}$$

• What is the step response of the FOS?

$$Y_{step}(s) = H(s)U(s) = rac{1}{Ts+1}rac{1}{s} = rac{1}{s} - rac{1}{s+rac{1}{T}} \Rightarrow y_{step}(t) = 1 - e^{rac{-t}{T}}$$

- Similar to impulse response, smaller $T \Rightarrow$ faster response
- Example:

Second Order Systems

Time Specs of Systems

Time Constant and Step Response

- What happens if t = T, i.e., t = 1 time constant?
- Answer: $y_{step}(t=T) = 1 e^{-T \over T} = 1 e^{-1} = 0.632$
- How many time constants do we need to reach steady-state (SS)?
- Solution: after $t \ge 5T$, we reach 99.3% of SS

First Order Systems

Second Order Systems

Time Specs of Systems

Effect of Poles on Step Response

©Ahmad F. Taha

First Order Systems

Second Order Systems

Time Specs of Systems

Ramp Response of FOSs

- So far, we've done impulse and step responses of FOSs
- Now: ramp response. Again, why are we doing this?
- What is the impulse response of the FOS?

$$Y_{ramp}(s) = H(s)U(s) = \frac{1}{Ts+1}\frac{1}{s^2} = \frac{1}{s^2} - \frac{T}{s} - \frac{T^2}{Ts+1} \Rightarrow y_{ramp}(t) = t - T + Te^{\frac{-t}{T}}$$

Important Remarks on FOSs

- Location of the pole (i.e., p = -1/T) determines the response of FOSs
- Transient will settle down (i.e., stable) if p is in the LHP
- If the pole is further on the LHP, transients will settle down faster
- Why are there no oscillations for step response of FOSs?
- I'll give you brownie points if you guess :)

First Order Systems

Second Order Systems
OOOOOOOOOOOOOOOOOO

Time Specs of Systems

SOSs: Introduction and Definition

$$\begin{array}{c} U(s) \\ \hline \\ H(s) \end{array} \xrightarrow{Y(s)} \end{array}$$

• Generic TF of SOSs:

$$H(s) = \frac{b_0 s^2 + b_1 s + b_2}{a_0 s^2 + a_1 s + a_2}$$

- Most important thing for SOSs: the location of the poles of H(s)
- SOS is called stable if all poles are in the LHP

First Order Systems

Second Order Systems

Time Specs of Systems

Step Response of Stable SOS

• Example:
$$H(s) = \frac{2s+1}{s^2+3s+2}$$
 — poles: $p_1 = -2, p_2 = -1$

• What's $y_{step}(t)$? We should know how to obtain that by now

•
$$y_{step}(t) = e^{-t} - 1.5e^{-2t} + 0.5e^{-2t}$$

- Poles p_1 and p_2 contribute to a term in $y_{step}(t)$
- However, since both poles are stable, step response converges to a SS value = 0.5 notice the so-called *overshoot*

Introduction to Classes of System Responses First Or 000000 00000

First Order Systems

Second Order Systems

Time Specs of Systems

What happens if the poles are stable, but complex?

- Another motivating example: $H(s) = \frac{1}{s^2 + 2s + 5}$
- Poles: $p_{1,2} = -1 \pm 2i$ stable poles (LHP), complex conjugates
- Step response: $y_{step}(t) = 0.2 0.2e^{-t}\cos(2t) + 0.1e^{-t}\sin(2t)$
- Sines and cosines \Rightarrow oscillations, right? What's the SS value?
- Step response:

Second Order Systems

Time Specs of Systems

More Common Standard Form of SOSs

• The most common standard form of SOSs:

$$H(s) = \frac{\omega^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- This form: (a) represents only one family of SOSs, (b) denominator polynomial has +ve coefficients, (c) H(0) = 1
- Definitions: (a) $\omega_n \equiv$ undamped natural frequency, (b) $\zeta \equiv$ damping ratio
- $\omega_n > 0$, $\zeta > 0$

First Order Systems

Second Order Systems

Time Specs of Systems

SOS Example: finding ω_n and ζ

 $v_i(t)$: input $v_o(t)$: output

- Recall this circuit example from Module 3
- What was the TF? $H(s) = \frac{1}{LCs^2 + RCs + 1}$
- This is not in the standard form (previous slide)

• In standard form:
$$H(s) = \frac{1/LC}{s^2 + \underbrace{R/L}_{=2\zeta\omega_n} \cdot s + \underbrace{1/LC}_{=\omega_n^2}}$$

• Hence:
$$\omega_n = \sqrt{1/LC}, \ \zeta = \frac{\kappa}{2\sqrt{\frac{L}{C}}}$$

Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems
000000	0000000	000000000000000000000000000000000000000	000000
Poles of SOSs			

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Poles:

$$p_{1,2}=\frac{-2\zeta\omega_n\pm\sqrt{4\omega_n^2(\zeta^2-1)}}{2}$$

- SOS has two poles how many cases to consider? Three cases:
- Underdamped case: Two complex conjugate poles $\Rightarrow 0 < \zeta < 1$
- Critically damped case: Two identical real poles $\Rightarrow \zeta = 1$
- Overdamped case: Two distinct real poles $\Rightarrow \zeta > 1$

First Order Systems

Second Order Systems

Time Specs of Systems

Case 1 — Underdampled System, $0 < \zeta < 1$

- Undampled natural frequency ωn determines the distance of poles to origin
- Damping ratio ζ determines the angle θ

First Order Systems

Second Order Systems

Time Specs of Systems

Case 1 — Underdampled System, Examples

Case 1 — Underdampled System, Step Response

- We can easily obtain the step response given Case 1 (0 < ζ < 1)
- Since we have complex poles, $p = -\sigma + j\omega_d$, taking the inverse Laplace transform for 1/(s + p) would yield exponentially decaying sines and cosines:

$$e^{pt} = e^{(-\sigma + \omega_d)t} = e^{-\sigma t} \left(\cos(\omega_d t) + j \sin(\omega_d t) \right)$$

• What are the transients and SS components?

Step response of
$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \zeta\omega_n)^2 + \omega_d^2}$$

 $s(t) = \mathcal{L}^{-1} [\frac{1}{s} \cdot \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}]$
 $\mathcal{L}[e^{-\alpha t} \sin \omega t] = \frac{\omega}{(s + \alpha)^2 + \omega^2}$
 $= \mathcal{L}^{-1} [\frac{1}{s} - \frac{s + \zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_d^2} - \frac{\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_d^2}]$
 $\mathcal{L}[e^{-\alpha t} \cos \omega t] = \frac{s + \alpha}{(s + \alpha)^2 + \omega^2}$
 $= 1 - e^{-\zeta\omega_n t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin \omega_d t$
 \uparrow
steady state response transient responses

Case 1 — Underdampled System Step Response

- Here, we change ζ , while ω_n is constant for an underdamped system
- Remember that

$$s(t) = y_{step}(t) = 1 - e^{-\zeta \omega_n t} \cos(\omega_d t) - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t)$$

- As we saw in the previous plot for different ζ for underdamped case, we have overshoot and oscillation
- Real part of the poles ($\sigma = \zeta \omega_n$) determines transient amplitude decaying rate
- Imaginary part of the poles (ω_d) determines transient oscillation frequency
- For a given undamped system, as $\zeta \nearrow$:
- Angle θ \nearrow , poles shift more to the left, ω_d \searrow
- Overshoot 📐
- What happens if we $\nearrow \omega_n$ and fix ζ ?

First Order Systems

Second Order Systems

Time Specs of Systems

Fixing ζ and Increasing ω_n

Case 2 — Critically Damped System, $\zeta = 1$

- $\bullet\,$ This case is not that interesting not as much as Case 1
- Why? Cz we have 2 identical real poles at the same location (LHP):

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \omega_n)^2}$$

• Poles:
$$p_{1,2} = -\omega_n$$

• Step response? $y_{step}(t) = \mathcal{L}^{-1}\left[\frac{1}{s} \cdot \frac{\omega_n^2}{(s+\omega_n)^2}\right] = 1 - e^{-\omega_n t} \left(1 + \omega_n t\right)$

• How did we get this from the step response of underdamped case?

$$y_{step}^{under}(t) = 1 - e^{-\zeta \omega_n t} \cos(\omega_d t) - rac{\zeta}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t)$$

Well, this can be obtained by letting ζ approach 1 and use the limit of sin(αx)/x = α as x → 0:

$$\lim_{\zeta \to 1} \frac{\sin(\omega_d t)}{\sqrt{1-\zeta^2}} = \lim_{\zeta \to 1} \frac{\sin(\omega_n \sqrt{1-\zeta^2} t)}{\sqrt{1-\zeta^2}} = \omega_n t$$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Also, not a very interesting case...Actually, a very boring one
- Poles: distinct real poles, $p_{1,2} = -(\zeta \pm \sqrt{\zeta^2 1})\omega_n$
- Step response:

$$y_{step}^{over}(t) = 1 - \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left(\frac{e^{p_1 t}}{p_1} - \frac{e^{p_2 t}}{p_2}\right)$$

- Can approximate overdamped second order systems as first order systems?
- Yes. How? Dominant poles...

First Order Systems

Second Order Systems

Time Specs of Systems

Step Response for Different ζ

• For $\zeta \geq 1$, system response mimics what?

Introduction to Classes of System Responses	First Order Systems	Second Order Systems	Time Specs of Systems
VERY Important Re	marks on SOS	Ss	

- Overdamped system is slow in responding to inputs takes time to reach SS
- That depends on how far the poles are in the LHP
- For systems without oscillations, which one responds faster to inputs? In other words, which one reaches SS faster?
- Answer: critically damped system, $\zeta=1$ see previous plot
- Underdamped systems with $0.5 \le \zeta \le 0.8$ get close to the final value more rapidly than critically dampled or overdampled system, without incurring too large overshoot
- How can we obtain impulse or ramp response of second order systems?
- Answer: by differentiation and integration, respectively.

Second Order Systems

Time Specs of Systems

Time Specs of Systems

- t_d : delay time time for $y_{step}(t)$ to reach half of $y_{step}(\infty)$
- 3 t_r : rise time time for $y_{step}(t)$ to reach first $y_{step}(\infty)$
- **3** t_p : **peak time** time for $y_{step}(t)$ to reach first peak
- M_p : maximum overshoot $M_p = \frac{y_{step}(t_p) y_{step}(\infty)}{y_{step}(\infty)}$
- t_s : settling time time for $y_{step}(t)$ to settle within a range of 2% 5% of $y_{step}(\infty)$ A typical step response $s(t) = y_{step}(t)$

First Order Systems

Second Order Systems

Time Specs of Systems

Time Specs of Systems — 2

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- Given ζ and ω_n , can we determine the time-specs in terms of them?
- I mean can we have an equations that relate the two?
- We can, yes...We'll focus on the underdamped case as three time-specs aren't defined for critically and overdamped systems
- Step response, revisited:

$$s(t) = y_{step}(t) = 1 - e^{-\zeta \omega_n t} \cos(\omega_d t) - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t)$$
$$= 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t + \beta)$$
$$\bullet \ \beta = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$$

First Order Systems

Second Order Systems

Time Specs of Systems

Closed form Solution of Time Specs

- Delay time: find the smallest positive solution to $y_{step}(t_d) = 0.5$
- Rise time: smallest positive solution of $y_{step}(t_r) = 1 \Rightarrow$

$$t_r = \frac{\pi - \beta}{\omega_d} = \frac{\pi - \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}}{\sqrt{1 - \zeta^2} \omega_n}$$

- **Peak time:** smallest positive solution to $y'_{step}(t_p) = 0$: $\left| t_p = \frac{\pi}{\omega_d} \right|$
- Maximum overshoot:

$$M_{p} = \frac{y_{step}(t_{p}) - y_{step}(\infty)}{y_{step}(\infty)} = y_{step}(t_{p}) - 1 \Rightarrow \boxed{M_{p} = e^{-\frac{\zeta}{\sqrt{1-\zeta^{2}}}\pi}}$$

- Settling time: $t_s \approx \frac{4}{\zeta \omega_n}$ (2% criteria), $t_s \approx \frac{3}{\zeta \omega_n}$ (5% criteria),
- $t_p \searrow$ with ω_n ; the smaller the ζ , the larger the M_p

Second Order Systems

Time Specs of Systems

Effect of Pole Locations on Responses of SOSs

First Order Systems

Second Order Systems

Time Specs of Systems

Where Are We Now?

Laplace Transforms

- Transfer Functions
- Solution of ODEs
- Modeling of Systems
- Block Diagrams
- Linearization

- 1st & 2nd Order
 Systems
 - Time Response

Analysis

(7-8 Weeks)

- Transient & Steady State
- Frequency Response
- Bode Plots
- RH Criterion
- Stability Analysis

- Root-Locus
- Modern Control

Design

(5-6 Weeks)

- State-Space
- MIMO System Properties

First Order Systems

Second Order Systems

Time Specs of Systems

Questions And Suggestions?

Thank You!

Please visit

engineering.utsa.edu/~taha IFF you want to know more ©