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Module 3 Outline

1 Physical laws and equations
2 Transfer function model
3 Model of electrical systems
4 Model of mechanical systems
5 Examples

– Reading material: Dorf & Bishop, Section 2.3
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Physical Laws and Models

By definition, dynamical systems are dynamic because they change
with time

Change in the sense that their intrinsic properties evolve, vary

Examples: coordinates of a drone, speed of a car, body temperature,
concentrations of chemicals in a centrifuge

Physicists and engineers like to represent dynamic systems with
equations

Why? Well, the answer is fairly straightforward

Dynamic model often means a differential equations
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Physical Laws

For many systems, it’s easy to understand the physics, and hence
the math behind the physics

– Examples: circuits, motion of a cart, pendulum, suspension system

For the majority of dynamical systems, the actual physics is complex

Hence, it can be hard to depict the dynamics with ODEs

– Examples: human body temperature, thermodynamics, spacecrafts

This illustrates the needs for models

Dynamic system model: a mathematical description of the actual
physics
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What are Transfer Functions?

* TFs: a mathematical representation to describe relationship between
inputs and outputs of the physics of a system, i.e., of the differential
equations that govern the motion of bodies, for example

Input: always defined as u(t)—called control action

Output: always defined as y(t)—called measurement or sensor data

TF relates the derivatives of u(t) and y(t)

Why is that important? Well, think of
∑

F = ma

F above is the input (exerted forces), and the output is the
acceleration, a

Give me the equations, please...
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Construction of Transfer Functions

For linear systems, we can often represent the system dynamics
through an nth order ordinary differential equation (ODE):

y (n)(t) + an−1y (n−1)(t) + an−2y (n−2)(t) + · · ·+ a0y(t) =

u(m)(t) + bm−1u(m−1)(t) + bm−2u(m−2)(t) + · · ·+ b0u(t)

The y (k) notation means we’re taking the kth derivative of y(t)

Typically, m > n

Given that ODE description, we can take the LT (assuming zero
initial conditions for all signals):

H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
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What are Transfer Functions?

Given this TF:

H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

For a given control signal u(t) or U(s), we can find the output of
the system, y(t), or Y (s)

Impulse response: defined as h(t)—the output y(t) if the input
u(t) = δ(t)

Step response: the output y(t) if the input u(t) = 1+(t)

For any input u(t), the output is: y(t) = h(t) ∗ u(t)

But...Convolutions are nasty...Who likes them?
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TFs of Generic LTI Systems

So, we can take the Laplace transform: Y (s) = H(s)U(s)

Typically, we can write the TF as:

H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

Roots of numerator are called the zeros of H(s) or the system
Roots of the denominator are called the poles of H(s)
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Example

Given: H(s) = 2s + 1
s3 − 4s2 + 6s − 4

Zeros: z1 = −0.5

Poles: solve s3 − 4s2 + 6s − 4 = 0, use MATLAB’s roots command

* poles=roots[1 -4 6 -4]; poles = {2, 1 + j , 1− j}

Factored form:

H(s) = 2 s + 0.5
(s − 2)(s − 1− j)(s − 1 + j)
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Analyzing Generic Physical Systems
Seven-step algorithm:

1 Identify dynamic variables, inputs (u), and system outputs (y)
2 Focus on one component, analyze the dynamics (physics) of this

component

– How? Use Newton’s Equations, KVL, or thermodynamics laws...
3 After that, obtain an nth order ODE:

n∑
i=1

αi y (i)(t) =
m∑

j=1
βju(j)(t)

4 Take the Laplace transform of that ODE
5 Combine the equations to eliminate internal variables
6 Write the transfer function from input to output
7 For a certain control U(s), find Y (s), then y(t) = L−1[Y (s)]
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Active Suspension Model
Each car has 4 active suspension systems (on each wheel)

System is nonlinear, but we consider approximation. Objective?

Input: road altitude r(t) (or u(t)), Output: car body height y(t)

©Ahmad F. Taha Module 03 — Modeling of Dynamical Systems 11 / 26



Physical Laws and Equations TF Models Mechanical System Model Electrical System Model Predator-Prey Model Linearization of NL Systems

Active Suspension Model — Equations for 1 Wheel

We only consider one of the four systems

System has many components, most important ones are: body (m2)
& wheel (m1) weights
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Active Suspension Model — Equations for Car Body

We now have 2 equations depicting the car body and wheel motion
Objective: find the TF relating output (y(t)) to input (r(t))

What is H(s) = Y (s)
R(s) ?
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Active Suspension Model — Transfer Function

Differential equations (in time):

m1ẍ(t) = ks(y(t)− x(t)) + b(ẏ(t)− ẋ(t))− kw (x(t)− r(t))
m2ÿ(t) = −ks(y(t)− x(t))− b(ẏ(t)− ẋ(t))

Take Laplace transform given zero ICs:

– Solution:

Find H(s) = Y (s)
R(s)

– Solution:
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Basic Circuits Components
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Basic Circuits — RLCs & Op-Amps
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TF of an RLC Circuit — Example

Apply KVL (assume zero ICs):

vi(t) = Ri(t) + Ldi(t)
dt + 1

C

∫
i(τ)dt

vo(t) = 1
C

∫
i(τ)dt

Take LT for the above differential equations:

Vi(s) = RI(s) + LsI(s) + 1
Cs I(s)

Vo(s) = 1
Cs I(s) ⇒ I(s) = CsVo(s)

⇒ Vo(s)
Vi(s) = 1

LCs2 + RCs + 1
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Generic Circuit Analysis
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Dynamic Models in Nature

Predator-prey equations are 1st order non-linear, ODEs

Describe the dynamics of biological systems where 2 species interact

One species as a predator and the other as prey

Populations change through time according to these equations:

ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = δx(t)y(t)− γy(t)

– x(t): # of preys (e.g., rabbits)

– y(t): # of predators (e.g., foxes)

– ẋ(t), ẏ(t): growth rates of the 2 species—function of time, t

– α, β, γ, δ: +ve real parameters depicting the interaction of the
species

©Ahmad F. Taha Module 03 — Modeling of Dynamical Systems 19 / 26



Physical Laws and Equations TF Models Mechanical System Model Electrical System Model Predator-Prey Model Linearization of NL Systems

Mathematical Model

ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = δx(t)y(t)− γy(t)

Prey’s population grows exponentially (αx(t))—why?

Rate of predation is assumed to be proportional to the rate at which
the predators and the prey meet (βx(t)y(t))

If either x(t) or y(t) is zero then there can be no predation

δx(t)y(t) represents the growth of the predator population

No prey ⇒ no food for the predator ⇒ y(t) decays

Is there an equilibrium? What is it?
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Nonlinear Dynamical Systems

Let’s face it: most dynamical systems are nonlinear

Nonlinearities can be seen in the ODEs, e.g.:

ẏ(t) + ẏ(t)ÿ(t) + cos(y(t)) = 2u(t) + arctan(ecos(u(t)))

Examples: electromechanical systems, electronics, hydraulic systems,
thermal, etc...

Why do we hate nonlinear systems?

– Well, because we cannot solve ODEs tractably if they are not linear

I mean we can, but they’re hard—and remember, we’re lazy

Solution: linearize nonlinear equations

Btw...most nonlinear systems are linear for a short period of time

So, it’s legit to linearize for a short period of time
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Linearization — The Main Idea
Linearization is one of the most important techniques in control
theory

Without it, all our analysis of nonlinear systems becomes pointless

First, let’s assume that a nonlinear system is linearized around an
operating point

Operating point is often called equilibrium point

Main idea:
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Linearization — The Simple Math

Nonlinear equation (or system): ẋ(t) = f (x , u)

Equilibrium points: ue , xe

Equilibrium deviation : δu(t) = u(t)− ue , δx(t) = x(t)− xe

Taylor series expansion around ue , xe :

ẋ(t) ≈ f (xe , ue) + (δx(t))∂f (x , u)
∂x

∣∣∣∣
xe ,ue

+ (δu(t))∂f (x , u)
∂u

∣∣∣∣
xe ,ue

Hence:

δẋ(t) ≈ (δx(t))∂f (x , u)
∂x

∣∣∣∣
xe ,ue

+ (δu(t))∂f (x , u)
∂u

∣∣∣∣
xe ,ue

This relationship is a linear one between δx and δu
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Linearization — Example

Pendulum motion:

f (x , u) = −g
L sin(x(t)) + 1

mL2 u(t)

x(t): angle (θ), u(t): force

Given equilibrium points: ue = 0, xe = π

Taylor series expansion around 0, π:

δf (δx , δu) ≈ g
L δx(t) + 1

mL2 δu(t)

This relationship is a linear one between δx and δu: only valid in the
vicinity of the equilibrium point
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Roadmap Revisited

©Ahmad F. Taha Module 03 — Modeling of Dynamical Systems 25 / 26



Physical Laws and Equations TF Models Mechanical System Model Electrical System Model Predator-Prey Model Linearization of NL Systems

Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,

©Ahmad F. Taha Module 03 — Modeling of Dynamical Systems 26 / 26

engineering.utsa.edu/~taha

	Physical Laws and Equations
	TF Models
	Mechanical System Model
	Electrical System Model
	Predator-Prey Model
	Linearization of NL Systems

