Laplace Transform: Defs & Props

Transfer Functions

Partial Fraction Expansion 000000 Solving ODEs using LTs 000 MATLAB Demo

Module 02 Laplace Transforms, Transfer Functions & ODEs

Ahmad F. Taha

EE 3413: Analysis and Desgin of Control Systems

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha

February 3, 2016

Laplace Transform: Defs & Props •000000000000000000000000000000000000	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
Module 02 Ou	tline			

- We will introduce Laplace Transforms
- Oiscuss their importance
- Properties and definitions
- Use them to solve ODEs
- Onderstand partial fraction expansion
- Transfer Functions... They're Imaginary...
- Examples, Examples!
- Reading material: Dorf & Bishop, Sections 2.4 & 2.5

- Laplace Transform: takes a function of t (time) to a function of a complex variable s (frequency)
- Given a function in time (t ≥ 0), f(t), we want to apply this transformation:

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$$

- Above integral might be undefined for some *s*
- Abscissa of convergence: smallest σ such that for all s with $Re(s) \geq \sigma$, the integral above converges

 Laplace Transform: Defs & Props
 Transfer Functions
 Partial Fraction Expansion
 Solving ODEs using LTs
 MATLAB Demo

 COOOCOCOOCOCOOCOCO
 COO
 COO
 COO
 COO
 COO

 Example 1: Step, Ramp, and Exponential Signals

What is the LT of $f(t) = 5 \forall t \ge 0$?

What is the LT of $f(t) = 2t \ \forall t \ge 0$?

What is the LT of $f(t) = e^{-at} \quad \forall t \ge 0$?

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000	000	000000	000	0000
Laplace Trasfo	rm Table			

- Integration can sometimes be tedious
- And we are often too lazy to do it
- Always look at the Table and compare to what you have
- Sometimes, you have to tweak your function to fit with the given transforms

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000	000	000000	000	0000
Laplaco Tracfo	rm Tabla -	_ 1		

			place	Transforms	
	$f(t) = \mathcal{L}^{-1} \{F(s)\}$	$F(s) = \mathcal{L}\left\{f(t)\right\}$		$f(t) = \mathcal{L}^{-1} \{F(s)\}$	$F(s) = \mathcal{L}\left\{f(t)\right\}$
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$
3.	$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p \ge -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n = 1, 2, 3, \dots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000	000	000000	000	0000
Laplace Trasfo	rm Table -	<u> </u>		

19.	$e^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$e^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_{c}(t) = u(t-c)$ Heaviside Function	$\frac{e^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e ^{-cs}
27.	$u_{c}(t)f(t-c)$	$e^{-cs}F(s)$	28.	$u_{c}(t)g(t)$	$e^{-\alpha} \mathcal{L}\left\{g\left(t+c\right)\right\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^{n}f(t), n = 1, 2, 3,$	$(-1)^n F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{z}^{\infty} F(u) du$	32.	$\int_0^t f(v) dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	$f\left(t+T\right)=f\left(t\right)$	$\frac{\int_{0}^{T} \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^{2}F(s) - sf(0) - f'(0)$
37.	$f^{(n)}(t)$	$s^n F(s) - s$	$f^{n-1}f($	$0) - s^{n-2} f'(0) \cdots - s f^{(n-2)} (0)$	$)) - f^{(n-1)}(0)$

- Laplace transform, by definition, is a linear mapping (transformation)
- In other words:

$$\mathcal{L}\left[\alpha_1 f_1(t) + \alpha_2 f_2(t)\right] = \alpha_1 F_1(s) + \alpha_2 F_2(s)$$

- Can you prove it? It's so easy
- Proof:

• Example:
$$\mathcal{L}[5 \cdot 1^+(t) + 2e^{-2}(t)] = ?$$

• What is the Laplace transform of a derivative of a function, f'(t)?

$$\mathcal{L}\left[f'(t)\right] = sF(s) - f(0)$$

- f(0) is the initial conditions of the function f(t) at t = 0
- Can you prove it? It's easy you need to know integration by parts
- Example: if $f(t) = \cos(2t)$, what is $\mathcal{L}[f'(t)]$?
- Higher order differentiation:

$$\mathcal{L}\left[f^{(n)}(t)\right] = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

Illustration

• What is the Laplace transform of an integral of a function?

$$\mathcal{L}\left[\int_0^t f(\tau) \, d\tau\right] = \frac{F(s)}{s}$$

- Can you prove it? Integration by parts, again!
- Proof:
- Illustration

Laplace Transform: Defs & Props Transfer Functions Partial Fraction Expansion OCO CONCOLOGIC CONCOL

• Consider
$$F(s) = \frac{N(s)}{D(s)}$$

- Poles of F(s): roots(D(s))
- Zeros of F(s): roots(N(s))
- * Final Value Theorem:

 $\lim_{t\to\infty} f(t) = \lim_{s\to0} sF(s)$ if all poles of sF(s) are in LHP

• Example 1:

$$F(s) = \frac{5}{s(s^2 + s + 2)} \Rightarrow \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{5}{s^2 + s + 2} = \frac{5}{2}$$

$$F(s) = \frac{4}{s^2 + 4} \Rightarrow \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) = \lim_{s \to 0} \frac{4s}{s^2 + 4} = 0$$
 WRONG!!!

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000000000000000000000000000000	000	000000	000	0000
FVL Example				

$$\xrightarrow{u(t)} \qquad \qquad \underbrace{y(t)}$$

• With all zero initial conditions for y(t) and u(t), system is governed by this second order ODE:

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 2\dot{u}(t) + u(t)$$

- Using FVT, find $\lim_{t\to\infty} y(t)$ if u(t) = 1
- Solution:

• Consider
$$F(s) = \frac{N(s)}{D(s)}$$

* Initial Value Theorem:

$$\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} sF(s)$$
 if the limit exists

- Note: In this theorem, it does not matter if pole location is in LHP or not
- Example 1:

$$F(s) = \frac{5}{s(s^2 + s + 2)} \Rightarrow \lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{5}{s^2 + s + 2} = 0$$

• Example 2:

$$F(s) = \frac{4}{s^2 + 4} \Rightarrow \lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{4s}{s^2 + 4} = 0$$

- We all hate convolutions, right?
- What is convolution anyway?

$$f_1(t) * f_2(t) = \int_0^t f_1(t-\tau) \cdot f_2(\tau) \, d\tau = \int_0^t f_2(t-\tau) \cdot f_1(\tau) \, d\tau$$

• What is the Laplace transform of $f_1 * f_2$?

$$\mathcal{L}[f_1(t) * f_2(t)] = \mathcal{L}[f_1(t)] \cdot \mathcal{L}[f_2(t)] = F_1(s) \cdot F_2(s)$$

- Note: $F_1(s)F_2(s) \neq \mathcal{L}[f_1(t)f_2(t)]$
- Laplace transform of convoluted functions is a smart way to run away from doing convolutions

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000	000	000000	000	0000
	Transform	-		
Inverse Laplace	erransforn			

Given a function in time (t ≥ 0), f(t), Laplace Transform is defined as:

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$$

- What if I have F(s)? Can I obtain f(t) back? Yes.You.Can!
- Inverse Laplace Transform:

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} dt$$

- The above integral is often very hard to solve, so it's easier to look at the table and figure things out
- Alternative: partial fraction expansion

- * **TFs**: a mathematical representation to describe relationship between inputs and outputs of the physics of a system, i.e., of the differential equations that govern the motion of bodies, for example
- Input: always defined as u(t)—called control action
- **Output**: always defined as y(t)—called measurement or sensor data
- TF relates the derivatives of u(t) and y(t)
- Why is that important? Well, think of $\sum F = ma$
- *F* above is the input (exerted forces), and the output is the acceleration, *a*
- Give me the equations, please...

• For linear systems, we can often represent the system dynamics through an *n*th order ordinary differential equation (ODE):

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + a_{n-2}y^{(n-2)}(t) + \dots + a_0y(t) =$$

$$u^{(m)}(t) + b_{m-1}u^{(m-1)}(t) + b_{m-2}u^{(m-2)}(t) + \cdots + b_0u(t)$$

- The $y^{(k)}$ notation means we're taking the kth derivative of y(t)
- Typically, m > n
- Given that ODE description, we can take the LT (assuming zero initial conditions for all signals):

$$F(s) = \frac{Y(s)}{U(s)} = \frac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

 Laplace Transform: Defs & Props
 Transfer Functions
 Partial Fraction Expansion
 Solving ODEs using LTs
 MATLAB Demo

 What are Transfer Functions?
 What are Transfer Functions?

• Given this TF:

$$F(s) = \frac{Y(s)}{U(s)} = \frac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

- For a given control signal u(t) or U(s), we can find the output of the system, y(t), or Y(s)
- But to do that, we need to take the inverse Laplace transform
- We can do that using partial fraction expansion
- **Remember:** TFs are imaginary, Y(s) often means nothing

• **Objective 1:** find the inverse Laplace transform of F(s) $(f(t) = \mathcal{L}^{-1}[F(s)])$ given that

$$F(s) = rac{N(s)}{D(s)} = rac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}, \ n \ge m$$

- For linear systems, N(s) and D(s) are always polynomials
- Typically, $\operatorname{order}(D(s)) > \operatorname{order}(N(s))$, i.e., $n \ge m$
- **Objective 1.1:** write $F(s) = \frac{N(s)}{D(s)}$ in terms of known expressions from the LTs table
- Three major cases—roots of *D*(*s*) are: (A) distinct, (B) equal, (C) complex

• Distinct roots for D(s) means that we can write F(s) as:

$$F(s) = \frac{N(s)}{D(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 (s - p_1)(s - p_2) \cdots (s - p_n)}$$

• Since $n \ge m$, the above form can simply be written as:

$$F(s) = \frac{c_1}{s - p_1} + \frac{c_2}{s - p_2} + \dots + \frac{c_n}{s - p_n}$$

- How will this form help me find f(t)?
- Well, that's easy: $f(t) = \mathcal{L}^{-1}[F(s)] = c_1 e^{p_1 t} + \cdots + c_n e^{p_n t}$
- Assume that p_i's are given
- Task: find the so-called residues c_i's for poles p_i's

• Solution:
$$c_i = (s - p_i)F(s)\Big|_{s=p_i}$$

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
0000000000000	000	00000	000	0000
Case A — Exa	mple			

• Find
$$f(t)$$
 if $F(s) = \frac{1}{s^2 + 5s + 6}$

• Roots of
$$s^2 + 5s + 6$$
 are: $p_{1,2} = -3, -2$

• Hence,
$$F(s) = \frac{1}{(s+3)(s+2)} = \frac{c_1}{s+3} + \frac{c_2}{s+2}$$

• Using the method in the previous slide:

$$c_{1} = (s+3)F(s)\Big|_{s=-3} = -1$$

$$c_{2} = (s+2)F(s)\Big|_{s=-2} = 1$$
• Thus, $F(s) = \frac{1}{(s+3)(s+2)} = \frac{-1}{s+3} + \frac{1}{s+2}$

• Can you find f(t) now? Of course you can

- For this case, assume that D(s) includes (s p₁)^k, where k is the multiplicity of pole p₁
- Find f(t) if $F(s) = \frac{1}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2}$
- To find A, C, use the Case A method:

$$A = (s+1)F(s)\Big|_{s=-1} = 1, \ C = (s+2)^2F(s)\Big|_{s=-2} = -1$$

- To find *B*, substitute for s = RandomNumber where *RandomNumber* $\neq -1, -2$
- Set s = 0, then B = -1
- Given A, B, C find f(t) using the table

• What if roots are imaginary? Remember that complex roots come in complex conjugates

• Consider that
$$F(s) = \frac{1}{s(s^2 + 2s + 2)}$$

- Roots of $s^2 + 2s + 2$ are complex conjugates since $\Delta = 4 8 = -4 < 0$
- We can write

$$F(s) = \frac{1}{s(s^2 + 2s + 2)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 2s + 2}$$

- Find A using the Case A method: A = 0.5
- How can we find *B*, *C*? Many options, but basically, you have to solve a system of two equations, two unknowns
- Solution: B = -0.5, C = -1

 Laplace Transform: Defs & Props
 Transfer Functions
 Partial Fraction Expansion
 Solving ODEs using LTs
 MATLAB Demo

 Coocoo
 Coocoo
 Coocoo
 Coocoo
 Coocoo
 Coocoo

• We now have:

$$F(s) = \frac{1}{s(s^2 + 2s + 2)} = \frac{0.5}{s} + \frac{-0.5s - 1}{s^2 + 2s + 2}$$

- What is f(t)?
- From the LT table:

$$\mathcal{L}^{-1}[\frac{b}{(s-a)^2+b^2}] = e^{at}\sin(bt), \mathcal{L}^{-1}[\frac{s-a}{(s-a)^2+b^2}] = e^{at}\cos(bt)$$

• Second part of F(s) can be written as:

$$\frac{-0.5s - 1}{s^2 + 2s + 2} = -0.5 \frac{s + 2}{s^2 + 2s + 2} = -0.5 \frac{(s + 1) + 1}{(s + 1)^2 + 1^2}$$
$$-0.5 \frac{(s + 1)}{(s + 1)^2 + 1^2} - 0.5 \frac{1}{(s + 1)^2 + 1^2}$$

• We can now go back to the ILT table and find f(t)

•
$$\mathcal{L}^{-1}[\frac{1}{(s+1)^2+1^2}] = e^{-t}\sin(t), \mathcal{L}^{-1}[\frac{s+1}{(s+1)^2+1^2}] = e^{-t}\cos(t)$$

©Ahmad F. Taha

Module 02 — Laplace Transforms, Transfer Functions & ODEs

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
Why? Why No	t?			

- Solving ODEs using time-domain techniques can be very challenging
- Laplace transforms and PFEs offer an easy way to solve ODEs
- Basic idea is as follows:

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
0000000000000	000	000000	000	0000
Example 1				

• Solve this ODE, i.e., find
$$y(t)$$
:

$$\ddot{y}(t) - y(t) = t$$
, $y(0) = 1$, $\dot{y}(0) = 1$

• Remember this property:

$$\mathcal{L}\left[f^{(n)}(t)\right] = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

Solution:

- Take Laplace Transform
- **O** Find Y(s)
- **(a)** Apply PFE for Y(s)—find the residues
- **Over the ILT to find** y(t)
- Solution Answer: $y(t) = 1.5e^t 0.5e^{-t} t$

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
000000000000	000	000000	000	0000
Example 2				

• Solve this ODE, i.e., find y(t):

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 5$$
, $y(0) = -1$, $\dot{y}(0) = 2$

- Solution:
 - Take Laplace Transform
 - Find Y(s)
 - **3** Apply PFE for Y(s)—find the residues
 - Use the ILT to find y(t)
 - Solution Answer: $y(t) = 1.5e^{-2t} 5e^{-t} + 2.5$

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo
0000000000000	000	000000	000	0000
MATLAB Dem	0			

- Most of what we learned today can be easily tested on MATLAB
- Let's start with the basics
- First, you need to understand the language of MATLAB
- Symbolic toolbox: provides functions for solving and manipulating symbolic math expressions
- Example: syms x y—for LTs, define syms s t
- To find the Laplace transform, use the command laplace
- To find the inverse Laplace transform, use the command ilaplace

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs 000	MATLAB Demo
MATLAB Exa	nples			

- syms s t
- o ans1=laplace(t*exp(3*t))
- iplace(ans1)
- ans2=laplace(t*t*cos(5*t)*exp(3*t))
- iplace(ans2)
- Let's try the PFE, command: residue
- [R,P,K] = residue(B,A)

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs 000	MATLAB Demo
Where are we	now?			

In this module, we learned:

- How to analytically compute Laplace transforms
- How to be lazy and look at the table—unless you are a genius
- Final and initial value theorems, because computing analytical limits is too mainstream
- Inverse Laplace transforms and PFEs
- Solving ODEs using LTs
- Where are we now?

Laplace Transform: Defs & Props	Transfer Functions	Partial Fraction Expansion	Solving ODEs using LTs	MATLAB Demo		
0000000000000	000	000000	000	0000		
Questions And Suggestions?						
Ullestions And	SILGGESTIC	nsi				

Thank You!

Please visit engineering.utsa.edu/~taha IFF you want to know more ©