Your Name:

SOLUTIONS

Your Signature:
\square

- Exam duration: 1 hour and 15 minutes.
- This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty much everything.
- No calculators of any kind are allowed.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your final answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 6 pages, plus this cover sheet. Please make sure that your exam is complete, that you read all the exam directions and rules.
- Question 6 is a bonus question. You do not need to answer it.

Question Number	Maximum Points	Your Score
1	20	
2	20	
3	25	
4	20	
5	10	
Total	100	

1. (20 total points) Find the Laplace transform or the inverse Laplace transform for the following functions. You may use the LT table.
(a) (5 points) $f_{1}(t)=e^{2 t} \cos (5 t)+e^{-3 t} \sinh (10 t)$.

$$
F_{1}(s)=\frac{s-2}{(s-2)^{2}+5^{2}}+\frac{10}{(s+3)^{2}-10^{2}}
$$

(b) $\left(5\right.$ points) $F_{2}(s)=\frac{\sqrt{45} s}{\left(s^{2}+16\right)^{2}}$.

$$
f_{2}(t)=\frac{3}{8} \sqrt{5} \cdot t \sin (4 t)
$$

(c) (5 points) $f_{3}(t)=e^{2 t}\left(t^{3}+5 t-2\right)$.

$$
F_{3}(s)=\frac{5}{(s-2)^{2}}-\frac{2}{s-2}+\frac{6}{(s-2)^{4}}
$$

(d) $\left(5\right.$ points) $F_{4}(s)=\frac{s+1}{(s-2)(s+2)}$.

$$
f_{4}(t)=\frac{1}{4} e^{-2 t}+\frac{3}{4} e^{2 t}
$$

2. (20 total points) The following ODE is given:

$$
y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=e^{2 t} .
$$

(a) (20 points) Given that $y(0)=0$ and $y^{\prime}(0)=1$, find the solution $y(t)$ to the above ODE via Laplace transforms.
Taking the Laplace transform for the ODE, and considering the given initial conditions, we obtain:

$$
s^{2} Y(s)-1-s Y(s)-2 Y(s)=\frac{1}{s-2}
$$

or

$$
Y(s)=\frac{s-1}{(s-2)\left(s^{2}-s-2\right)}=\frac{s-1}{(s-2)^{2}(s+1)}
$$

Applying partial fraction expansion, we obtain:

$$
Y(s)=\frac{s-1}{(s-2)\left(s^{2}-s-2\right)}=\frac{A}{s+1}+\frac{B}{s-2}+\frac{C}{(s-2)^{2}}
$$

where $A=-\frac{2}{9}, B=\frac{2}{9}$, and $C=\frac{1}{3}$.
Therefore,

$$
y(t)=-\frac{2}{9} e^{-t}+\frac{2}{9} e^{2 t}+\frac{1}{3} t e^{2 t}
$$

3. (25 total points) For the system given in the below figure, assume that:

$$
\begin{gathered}
G(s)=\frac{1}{(s-1)(s+3)} \\
H(s)=4
\end{gathered}
$$

(a) (5 points) Find the transfer function $\frac{Y(s)}{U(s)}$ in the most simplified form.

$$
\frac{Y(s)}{U(s)}=\frac{G(s)}{1+G(s) H(s)}=\frac{\frac{1}{(s-1)(s+3)}}{1+4 \frac{1}{(s-1)(s+3)}}=\frac{1}{(s-1)(s+3)+4}=\frac{1}{s^{2}+2 s+1}
$$

(b) (5 points) Find $Y(s)$ if $u(t)=1$. DO NOT compute $y(t)$.

$$
Y(s)=\frac{U(s)}{s^{2}+2 s+1}=\frac{1}{s\left(s^{2}+2 s+1\right)}=\frac{1}{s(s+1)^{2}} .
$$

(c) (5 points) What are the poles of $Y(s)$? Does the final value of $y(t)$ exist (i.e., $y(\infty)$)? If it does, find it via the final value theorem. Otherwise, tell me why it doesn't.

The poles of $Y(s)$ are: $0,-1,-1$. Therefore, the final value theorem applies:

$$
y(\infty)=\lim _{s \rightarrow 0} s Y(s)=1
$$

(d) (10 points) Obtain $\frac{E(s)}{U(s)}$, then find $E(s)$ for the given $u(t)=1$. Does the final value of $e(t)$ exist (i.e., $e(\infty)$)? If it does, find it via the final value theorem. Otherwise, tell me why it doesn't.

$$
\frac{E(s)}{U(s)}=\frac{1}{1+G(s) H(s)} \Rightarrow E(s)=\frac{(s-1)(s+3)}{(s-1)(s+3)+4} \cdot \frac{1}{s}=\frac{(s-1)(s+3)}{s(s+1)^{2}}
$$

The poles of $E(s): 0,-1,-1$. Therefore, the final value theorem applies:

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=-3
$$

4. (20 total points) You are given the following block diagram.

(a) (20 points) Find $\frac{Y(s)}{X(s)}$ for the above system. Show your work.

$$
\frac{Y(s)}{X(s)}=\frac{\frac{G_{1}\left(G_{3}+G_{2} G_{4}\right)}{1+G_{1} H_{1}}}{1+\frac{G_{1}\left(G_{3}+G_{2} G_{4}\right)}{1+G_{1} H_{1}} H_{2}}=\frac{G_{1}\left(G_{3}+G_{2} G_{4}\right)}{1+G_{1} H_{1}+H_{2} G_{1}\left(G_{3}+G_{2} G_{4}\right)}
$$

5. (10) You are given the following RLC circuit.

(a) (10 points) Derive the transfer function $\frac{V_{o}(s)}{V_{i}(s)}$ in terms of R_{1}, L, and R_{2}. Show your work.
Let I, I_{1}, I_{2} be the currents across R_{1}, R_{2}, L, respectively. This is a very similar example to the one from the recitation session. Applying KCL and KVL, we obtain:

$$
I(s)=I_{1}(s)+I_{2}(s), V_{i}(s)=R_{1} I(s)+L s I_{2}(s), L s I_{2}(s)=R_{2} I_{1}(s)
$$

Therefore, $I_{1}(s)=\left(L s / R_{2}\right) I_{2}(s)$, and hence:

$$
I(s)=I_{1}(s)+I+I_{2}(s)=\left(L s / R_{2}\right) I_{2}(s)+I_{2}(s) \Rightarrow I_{2}(s)=\frac{1}{\left(L s / R_{2}\right)+1} I(s)
$$

Thus:

$$
V_{i}(s)=R_{1} I(s)+L s I_{2}(s) \Rightarrow V_{i}(s)=\left(R_{1}+\frac{L s}{\left(L s / R_{2}\right)+1}\right) I(s)
$$

We also know that

$$
V_{o}(s)=R_{2} I_{1}(s)=L s I_{2}(s)=\frac{L s}{\left(L s / R_{2}\right)+1} I(s)
$$

Dividing the two equations above, we obtain:

$$
\begin{aligned}
\frac{V_{o}(s)}{V_{i}(s)} & =\frac{\frac{L s}{\left(L s / R_{2}\right)+1} I(s)}{\left(R_{1}+\frac{L s}{\left(L s / R_{2}\right)+1}\right) I(s)}=\frac{\frac{L s}{\left(L s / R_{2}\right)+1}}{\left(R_{1}+\frac{L s}{\left(L s / R_{2}\right)+1}\right)} \\
& =\frac{L s}{\left(L+\frac{R_{1} L}{R_{2}}\right) s+R_{1}}=\frac{R_{2} L s}{\left(R_{1}+R_{2}\right) L s+R_{1} R_{2}}
\end{aligned}
$$

6. (15) [Bonus Question: Do not answer this before finishing the first five exam questions.]
(a) (15 points) Prove the initial value theorem:

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s) .
$$

Check the uploaded handout on Blackboard.

