Your Name:

Your Signature:
\square

- Exam duration: 1 hour and 20 minutes.
- This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty much everything.
- No calculators of any kind are allowed.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your final answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 11 pages, plus this cover sheet. Please make sure that your exam is complete, that you read all the exam directions and rules.
- Question 6 is a bonus question. You do not need to answer it. You should also finish the main exam questions before attempting the bonus one.

Question Number	Maximum Points	Your Score
1	20	
2	20	
3	25	
4	20	
5	15	
Total	100	
Bonus	15	

1. (20 total points) Find the Laplace transform or the inverse Laplace transform for the following functions. You may use the LT table.
(a) (5 points) $f_{1}(t)=e^{2 t} \cos (5 t)+e^{-3 t} \sinh (10 t) . F_{1}(s)=$?
(b) (5 points) $F_{2}(s)=\frac{\sqrt{45} s}{\left(s^{2}+16\right)^{2}} \cdot f_{2}(t)=$?
(c) (5 points) $f_{3}(t)=e^{2 t}\left(t^{3}+5 t-2\right) . F_{3}(s)=$?
(d) (5 points) $F_{4}(s)=\frac{s+1}{(s-2)(s+2)} \cdot f_{4}(t)=$? You'll have to solve this via partial fraction expansion.
2. (20 total points) The following ODE is given:

$$
y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=e^{2 t} .
$$

(a) (20 points) Given that $y(0)=0$ and $y^{\prime}(0)=1$, find the solution $y(t)$ to the above ODE via Laplace transforms.
3. (25 total points) For the system given in the below figure, assume that:

$$
\begin{gathered}
G(s)=\frac{1}{(s-1)(s+3)} \\
H(s)=4
\end{gathered}
$$

(a) (5 points) Find the transfer function $\frac{Y(s)}{U(s)}$. You can either derive it or just write it down immediately.
(b) (5 points) Find $Y(s)$ if $u(t)=1$. DO NOT compute $y(t)$.
(c) (5 points) What are the poles of $Y(s)$? Does the final value of $y(t)$ exist (i.e., $y(\infty)$)? If it does, find it via the final value theorem. Otherwise, tell me why it doesn't.
(d) (10 points) Obtain $\frac{E(s)}{U(s)}$, then find $E(s)$ for the given $u(t)=1$. Does the final value of $e(t)$ exist (i.e., $e(\infty)$)? If it does, find it via the final value theorem. Otherwise, tell me why it doesn't.
4. (20 total points) You are given the following block diagram.

(a) (20 points) Find $\frac{Y(s)}{X(s)}$ for the above system. Show your work.
5. (15 total points) You are given the following RLC circuit.

(a) (15 points) Derive the transfer function $\frac{V_{o}(s)}{V_{i}(s)}$ in terms of R_{1}, L, and R_{2}. Show your work. Your transfer function should have the standard form of a transfer function, i.e., polynomials in the numerator and denominator.
6. (15 total points) [Bonus Question: Do not answer this before finishing the first five exam questions.]
(a) (15 points) Prove the initial value theorem:

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

Table of Laplace Transforms

	$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\{\mathfrak{L}\{f(t)\}$	$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2. $\mathbf{e}^{a t}$	$\frac{1}{s-a}$
3.	$t^{n}, \quad n=1,2,3, \ldots$	$\frac{n!}{s^{n+1}}$	4. $t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2 s^{\frac{1}{2}}}$	6. $t^{n-\frac{1}{2}}, \quad n=1,2,3, \ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) \sqrt{\pi}}{2^{n} s^{n+\frac{2}{2}}}$
7.	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$	8. $\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
9.	$t \sin (a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	10. $t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
11.	$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$	12. $\sin (a t)+a t \cos (a t)$	$\frac{2 a s^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
13.	$\cos (a t)-a t \sin (a t)$	$\frac{s\left(s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{2}}$	14. $\cos (a t)+a t \sin (a t)$	$\frac{s\left(s^{2}+3 a^{2}\right)}{\left(s^{2}+a^{2}\right)^{2}}$
15.	$\sin (a t+b)$	$\frac{s \sin (b)+a \cos (b)}{s^{2}+a^{2}}$	16. $\cos (a t+b)$	$\frac{s \cos (b)-a \sin (b)}{s^{2}+a^{2}}$
17.	$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$	18. $\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
19.	$\mathrm{e}^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	20. $\mathbf{e}^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
21.	$\mathrm{e}^{a t} \sinh (b t)$	$\frac{b}{(s-a)^{2}-b^{2}}$	22. $\mathbf{e}^{a t} \cosh (b t)$	$\frac{s-a}{(s-a)^{2}-b^{2}}$
23.	$t^{n} \mathbf{e}^{a t}, \quad n=1,2,3, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	24. $f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$
25.	$u_{c}(t)=u(t-c)$ Heaviside Function	$\frac{\mathrm{e}^{-c s}}{s}$	26. $\delta(t-c)$ Dirac Delta Function	$\mathrm{e}^{-c s}$
27.	$u_{c}(t) f(t-c)$	$\mathrm{e}^{-c s} F(s)$	28. $u_{c}(t) g(t)$	$\mathrm{e}^{-c s} \mathcal{L}\{g(t+c)\}$
29.	$\mathrm{e}^{c t} f(t)$	$F(s-c)$	30. $t^{n} f(t), \quad n=1,2,3, \ldots$	$(-1)^{n} F^{(n)}(s)$
31.	$\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(u) d u$	32. $\int_{0}^{t} f(v) d v$	$\frac{F(s)}{s}$
33.	$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$	34. $f(t+T)=f(t)$	$\frac{\int_{0}^{T} \mathrm{e}^{-s t} f(t) d t}{1-\mathrm{e}^{-s T}}$
35.	$f^{\prime}(t)$	$s F(s)-f(0)$	36. $f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
37.	$f^{(n)}(t)$	$s^{n} F(s)-$	${ }^{-1} f(0)-s^{n-2} f^{\prime}(0) \cdots-s f^{(n-2)}$	(0) $-f^{(n-1)}(0)$

