Your Name:

Your Signature:

- Exam duration: 1 hour and 20 minutes.
- This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty much everything.
- **No calculators** of any kind are allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, **even if your answer is correct**.
- Place a box around your final answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 11 pages, plus this cover sheet. Please make sure that your exam is complete, that you read all the exam directions and rules.
- Question 6 is a bonus question. You do not need to answer it. You should also finish the main exam questions before attempting the bonus one.

Question Number	Maximum Points	Your Score
1	20	
2	20	
3	25	
4	20	
5	15	
Total	100	
Bonus	15	

1. (20 total points) Find the Laplace transform or the inverse Laplace transform for the following functions. You may use the LT table.

(a) (5 points) $f_1(t) = e^{2t}\cos(5t) + e^{-3t}\sinh(10t)$. $F_1(s) = ?$

(b) (5 points)
$$F_2(s) = \frac{\sqrt{45}s}{(s^2 + 16)^2}$$
. $f_2(t) = ?$

(c) (5 points) $f_3(t) = e^{2t}(t^3 + 5t - 2)$. $F_3(s) = ?$

(d) (5 points) $F_4(s) = \frac{s+1}{(s-2)(s+2)}$. $f_4(t) =$? You'll have to solve this via partial fraction expansion.

2. (20 total points) The following ODE is given:

$$y''(t) - y'(t) - 2y(t) = e^{2t}$$
.

(a) (20 points) Given that y(0) = 0 and y'(0) = 1, find the solution y(t) to the above ODE via Laplace transforms.

3. (25 total points) For the system given in the below figure, assume that:

$$G(s) = \frac{1}{(s-1)(s+3)},$$
$$H(s) = 4.$$

(a) (5 points) Find the transfer function $\frac{Y(s)}{U(s)}$. You can either derive it or just write it down immediately.

(b) (5 points) Find Y(s) if u(t) = 1. DO NOT compute y(t).

(c) (5 points) What are the poles of Y(s)? Does the final value of y(t) exist (i.e., $y(\infty)$)? If it does, find it via the **final value theorem**. Otherwise, tell me why it doesn't.

(d) (10 points) Obtain $\frac{E(s)}{U(s)}$, then find E(s) for the given u(t) = 1. Does the final value of e(t) exist (i.e., $e(\infty)$)? If it does, find it via the **final value theorem**. Otherwise, tell me why it doesn't.

4. (20 total points) You are given the following block diagram.

(a) (20 points) Find $\frac{Y(s)}{X(s)}$ for the above system. Show your work.

5. (15 total points) You are given the following RLC circuit.

(a) (15 points) Derive the transfer function $\frac{V_o(s)}{V_i(s)}$ in terms of R_1 , L, and R_2 . Show your work. Your transfer function should have the standard form of a transfer function, i.e., polynomials in the numerator and denominator.

- 6. (15 total points) [Bonus Question: Do not answer this before finishing the first five exam questions.]
 - (a) (15 points) Prove the initial value theorem:

$$\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} sF(s).$$

Table of Laplace Transforms $c(x) = a^{-1}(T(x))$ $T(x) = a^{-1}(T(x))$						
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$		2	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$\frac{F(S) = \mathcal{L}\{f(t)\}}{1}$	
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\overline{s-a}$	
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n = 1, 2, 3, \dots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$	
19.	$e^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$e^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
25.	$u_{c}(t) = u(t-c)$ <u>Heaviside Function</u>	$\frac{e^{-\alpha}}{s}$	26.	$\delta(t-c)$	e ^{-∞}	
27.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	28.	$\frac{\text{Dirac Delta Function}}{u_{\epsilon}(t)g(t)}$	$e^{-\alpha} \mathcal{L}\{g(t+c)\}$	
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^{n}f(t), n = 1, 2, 3,$	$(-1)^n F^{(n)}(s)$	
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v) dv$	$\frac{F(s)}{s}$	
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$			$f\left(t+T\right)=f\left(t\right)$	$1 - e^{-sT}$	
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^{2}F(s) - sf(0) - f'(0)$	
37.	$f^{(n)}(t)$	$s^n F(s) - s$	$f^{n-1}f($	$0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$(0) - f^{(n-1)}(0)$	