
THE UNIVERSITY OF TEXAS AT SAN ANTONIO
EE 5143
LINEAR SYSTEMS AND CONTROL

H O M E W O R K # 7
Andres Rainiero Hernandez Coronado

November 22, 2017

Due date of the homework is: Sunday, November 26th @ 11:59pm.

1. The following LTI system is given:

ẋ(t) =
[

0 α
−α 0

]
x(t) +

[
0
1

]
u(t), y(t) =

[
0 1

]
x(t).

(a) Assume that α = 2. Find a state feedback controller u(t) = −Kx(t) such that the closed loop
evalues are both at −1.

K =
[
k1 k2

]
⇒ BK =

[
0 0
k1 k2

]
⇒ A− BK =

[
0 2

−2− k1 −k2

]
π(ACL) = (λ + 1)(λ + 1) = λ2 + 2λ + 1 = 0

π(ACL) = (−λ)(−k2 − λ)− (−2− k1)(2) = λ2 + (k2)λ + (4 + 2k1) = 0

k2 = 2 k1 = (1− 4)/2 = −3/2

u(t) =
[
−3/2 2

]
x(t)

(b) Assume now that α is not known. Find the range of values of α that would make the state-
feedback controlled system stable. That is, set u(t) = −Kx(t) and find the range of values
of α that would produce a stable closed loop system performance.
The characteristic polynomial needs to follow the next rules:

π(ACL) = (λ + x1)(λ + x2) = 0

x1, x2 > 0 x1 + x2 > 0 x1x2 > 0

A− BK =

[
0 α

−α + 3/2 −2

]
π(ACL) = (−λ)(−2− λ)− (−α + 3/2)(α) = λ2 + 2λ + (α2 − 3/2α) = 0

From the characteristic polynomial it is known that x1 + x2 = 2 and that x1x2 ≤ 1, which
gives the upper bound of α ≤ 2. The lower bound is given by:

x1x2 = α2 − 3/2α ⇒ α2 > 3/2α

Since α2 needs to be larger than 3/2α, then the lower bound is α > 3/2 (Note that this range
of α will make the closed-loop system asymptotically stable).

3/2 < α ≤ 2

(c) For the question in part (b), what is the percentage of change in α from α = 2 that we
considered in part (a), that the system can tolerate before becoming unstable?
Given that α = 2 = 100%, α can be changed in less than 25%.
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(d) Assume again that α = 2, and that x(t) is not available in real-time. This requires building
a state estimator or an observer. Design an observer gain L such that the estimation error
evalues are both at −1.

π(AD) = (λ + 1)(λ + 1) = λ2 + 2λ + 1 = 0

π(AD) = (−λ)(−l2 − λ)− (−2)(2− l1) = λ2 + (l2)λ + (4− 2l1) = 0

l1 = 3/2 l2 = 2

L =

[
3/2

2

]
(e) After solving (d), combine the controller from (a) with the observer in (d) to arrive at an

observer-based state-feedback controller.
By taking the form: [

ẋ(t)
˙̂x(t)

]
=

[
A −BK

LC A− LC− BK

] [
x(t)
x̂(t)

]

[
ẋ(t)
˙̂x(t)

]
=


0 2 0 0
−2 0 3/2 −2
0 3/2 0 1/2
0 2 −1/2 −4

 [x(t)
x̂(t)

]

(f) Implement the whole setup on MATLAB via the ode45 solver. Show that the observer is
succeeding in estimating the system states. Consider that the estimator initial conditions are
zero (i.e., x̂(0) = 0) and that the system’s initial conditions are x(0) =

[
−2 2

]>.
The following script will be used to describe the system from (e):

function dx = ocb(t, x)

A = [0 2 0 0; -2 0 3/2 -2; 0 3/2 0 1/2; 0 2 -1/2 -4];

dx = A*x;

end

Using the following commands, a plot can be obtained:

>> x0 = [-2; 2; 0; 0];

>> tspan = [0 30];

>> [t, y] = ode45(@ocb, tspan, x0);

>> plot(t,y)
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The plot of the solution looks as follows:

From the image it is evident that the estimation for the first state is very accurate, and that
the first state is correctly estimated at around 4 seconds. The second state takes longer to be
estimated correctly, around 7 seconds.

(g) Assume now that we connect the observer designed in part (d) with the system with un-
known α in part (b). What are the values of α that would drive the observer-based controller
system to stay stable?
Hint: For any fourth order polynomial

s4 + a3s3 + a2s2 + a1s + a0 = 0

to have roots with negative real parts, the necessary and sufficient conditions are that:

{a3, a2, a1, a0} > 0, a1a2a3 − b1a2
3 − a2

1 > 0.

It is not necessary to solve a fourth order polynomial, the next representation has the same
evalues as the representation provided in (e):

Â =

[
A− BK BK

0 A− LC

]
Note that this form is block diagonal, meaning that the evalues of the blocks Â11, Â22 are the
evalues of Â. The calculations of the evalues of each block is as follows:

det(A− BK) = det(Â11) = (−λ)(−2− λ)− (−α + 3/2)(α) = 0

det(A− LC) = det(Â22) = (−λ)(−2− λ)− (−α)(α− 3/2) = 0

The characteristic polynomial of both blocks is identical, meaning that the range of values
of α to make the evalues of the blocks stable (and the OBC system) are given by the solution
obtained in (b).

3/2 < α ≤ 2
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2. The following autonomous LTI system is given:

ẋ(t) = Ax(t) =
[
−1 1
0 1

]
x(t), y(t) = Cx(t) =

[
0 1

]
x(t).

(a) Is the above system observable? Prove that via the four tests of observability.
Test 1:

O =

[
C

CA

]
=

[
0 1
0 1

]
rank(O) = 1 < 2

The controllability matrix is not full rank.
Test 2:

eig(A) = −1, 1

rank(
[
(1)I − A

C

]
) =

2 −1
0 0
0 1

 = 2

rank(
[
(−1)I − A

C

]
) =

0 −1
0 −2
0 1

 = 1

The rank of the computed matrix for −1 is less than 2.
Test 3:

eig(A) = −1, 1

(A− (−1)I)v1 =

[
0 1
0 2

]
v1 = 0 ⇒ v1 =

[
1
0

]

Cv1 =
[
0 1

] [1
0

]
= 0

(A− (1)I)v2 =

[
−2 1
0 0

]
v2 = 0 ⇒ v2 =

[
1
2

]

Cv2 =
[
0 1

] [1
2

]
= 2

The test fails for the evector v1 that corresponds to the eigenvalue −1.
Test 4:

eAτ =

[
1 1
0 2

] [
e−τ 0

0 eτ

] [
1 −1/2
0 1/2

]
=

e−τ −e−τ + eτ

2
0 eτ



(eAτ)′ =

 e−τ 0
−e−τ + eτ

2
eτ


∫ t

0
(eAτ)′C′CeAτdτ =

∫ t

0

[
0 0
0 e2τ

]
The integration is not necessary, it can be concluded that the resultant matrix will be singular.
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(b) What is the unobservable subspace (if any)?
The unobservable subspace is the null-space of the Observability matrix.

N(O) = span{
[

1
0

]
}

(c) Is the above system detectable?
Yes, the evalue 1 has an stable evector which was proven in Test 3 from (a), since Cv2 6= 0.

(d) Design a Luenberger observer such that the closed loop estimation error dynamics have
both evalues placed at −1.

M = A− LC =

[
−1 1
0 1

] [
L1
L2

] [
0 1

]
=

[
−1 1− L1
0 1− L2

]
π(ACL) = (λ + 1)(λ + 1) = λ2 + 2λ + 1 = 0

π(M) = (−1− λ)(1− L2 − λ) = λ2 + L2λ + (L2 − 1) = 0

From simple inspection L2 = 2, the value of L1 is redundant, since it wont affect the values
of the evalues of the closed loop matrix.

(e) Show an overall diagram of the dynamic system and the observer.

(f) Find limt→∞ e(t)?

Assume that L =
[
0 2

]T .

ė(t) = (A− LC)e(t) ⇒ e(t) = e(A−LC)t

e(t) = exp(
[
−1 1
0 1

]
−
[

0
2

] [
0 1

]
) = exp(

[
−1 1
0 −1

]
)

e(t) =
[

e−t te−t

0 e−t

]
Note that e(t) will always have the form of the exponential of a Jordan block, since the values
on the diagonal are -1, the limit of e(t)⇒ is a zero matrix.

lim
t→∞

e(t) =
[

0 0
0 0

]
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(g) Assume now we slightly change the dynamics of the system. Specifically, we change the
A-matrix to:

Ā =

[
−0.9 1

0 1

]
.

Given this slight change in matrix A, will the observer designed in the previous part yield
converging and asymptotically stable estimation error dynamics or no?

Hint: Derive the closed loop dynamics of
[

ẋ(t)
ė(t)

]
and investigate the stability of the closed

loop estimation error dynamics.
Yes, the observer will work and will yield asymptotically stable estimation error dynamics,
simply because A− LC corrects the positive evalue 1 and won’t modify the evalue−0.9. For
the new closed-loop system, the evalues will be −0.9,−1 which are in the LHP, making the
solution of the estimation error asymptotically stable.

3. You are given a CT-LTI system defined by

A =

[
3 −2
4 −3

]
, B =

[
1
−1

]
, C =

[
1 0

]
.

(a) Design a dynamic observer such that the error dynamics have eigenvalues at −4 and −2.
First, you should derive the dynamics of the observer and explain how it works. Then,
obtain a gain L that achieves the desired objective.

y(t) = Cx(t) + Du(t)

ŷ(t) = Cx̂(t) + Du(t)

ẋ(t) = Ax(t) + Bu(t)

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− ŷ(t))

The dynamics of the observer are designed in a way that the output of the observer needs
to correct itself depending on the difference of the estimated output and the actual output,
described by L(y− ŷ).

ė(t) = ẋ(t)− ˙̂x(t)

ė(t) = Ax(t) + Bu(t)− Ax̂(t)− Bu(t)− LCx(t) + LCx̂(t) + Du(t)− Du(t)

Note that Bu(t) and Du(t) get cancelled, meaning that the design of the observer is inde-
pendent of the input.

ė(t) = Ax(t) + Ax̂(t)− LCx(t) + LCx̂(t)

ė(t) = (A− LC)(x(t)− x̂(t))

ė(t) = (A− LC)e(t)

The solution of e(t) = eA−LC, meaning that A− LC needs to have stable evalues to provide
an asymptotically stable solution for e(t), that is, make the estimation error go to zero.
The design of L is as follows:

p(ACL) = (λ + 4)(λ + 2) = 0

ACL =

[
3− L1 −2
4− L2 −3

]
p(ACL) = (3− L1 − λ)(−3− λ)− (4− λ)(−2) = 0
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p(ACL) = λ2 + L1λ + (−9 + 8 + 3L1 − 2L2) = 0

L1 = 6 L2 = 4.5 L =

[
6

4.5

]
(b) Finally, plot the norm of the estimation error dynamics, i.e., ||e(t)||2 as a function of time

given that the observer’s initial conditions are x̂(0) =
[
10 −10

]> and x(0) =
[
0 0

]>.
Consider that the input is u(t) = 2 sin(10t). Your plot should be a single plot versus time,
since the norm function returns a scalar. Implement the whole setup on MATLAB via the
ode45 solver.
The system will be implemented as follows:
A function that represents the dynamics of the real states and the observer states is created:[

x(t)
x̂(t)

]
=

[
A 0

LC A− LC

] [
x(t)
x̂(t)

]
+

[
B
B

]
u(t)

function dx = problem3(t, x)

L = [6; 4.5];

A = [3 -2; 4 -3];

B = [1; -1];

C = [1 0];

u = 2*sin(10*t);

dx = [A zeros(2); L*C (A-L*C)]*x + [B;B]*u;

end

Using the ode45 solver, the values of the states are obtained:
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With the information about the values of the states, an different function is created to calcu-
late the estimation error norm:

function e = errorNorm(dx)

[m,n] = size(dx);

e = zeros(m,1);

for i=1:m

e(i) = norm(dx(i,1:2) - dx(i,3:4));

end

end

With this function, the following plot is obtained:

When comparing both plots, it is evident that the estimation is accurate at around 3 seconds.

(c) How can you improve the convergence of the estimation error? Show that both analytically
and via implementation.
It can be done by providing the ACL matrix with more aggresive evalues, i.e., making the
evalues larger negatives.
Proof:
The solution of the error function is as follows:

e(t) = eA−CL

If the evalues of A− CL are large negatives, this means that e(t) will converge faster to zero
as time goes on.
Using the previous code, L will be modified to provide A− CL with evales -40 and -20:

L =

[
60
−310.5

]
Using the exact same steps as in (b) the next plot is obtained:
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Note that the estimation error becomes zero in less than a second. However, at the very
beginning there is a high error value (almost equal to 35).

(d) Most systems are noisy, in the sense that the real dynamics are more like:

ẋ(t) = Ax(t) + Bu(t) + w(t)

where w(t) is the noise. Often, we assume that w(t) is a random variable with a well known
distribution. Assume that w(t) is a white Gaussian noise. You can implement this via the
randn or rand commands in MATLAB. For example, you can write in the ODE solver file
w=0.1*randn(n,1) which defines a vector of random quantities.
Investigate whether the observer you designed in the above parts is robust enough to this
noise signal in the state evolution. Of course, you should not add noise in the observer
dynamics, but only in the state dynamics. You can change the scaling factor 0.1 to something
smaller or bigger—depending on the robustness of this observer.
Can you draw any conclusions?
The noise will be applied as follows:

function dx = problem3(t, x)

L = [6; 4.5];

A = [3 -2; 4 -3];

B = [1; -1];

C = [1 0];

u = 2*sin(10*t);

w = zeros(4,1);

w(1:2) = 1*randn(2,1);

dx = [A zeros(2); L*C (A-L*C)]*x + [B;B]*u + w;

end

When solving the system of equations with the noise (0.1*randn(n,1)) using ode45 for the
first L proposed in (b), the next error norm plot is obtained:
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From the image it is evident that the estimator is able to keep up with the noise present on
the system, however, there is a noticeable degree of error, but it might bearable.
When changing the noise to 1*randn(n,1) the following plot is obtained:

When increasing the scale of error, it can be concluded that the estimator fails to estimate
the internal states, and a great degree of error is produced, especially after 7 seconds.
Finally, when the noise is .01*randn(n,1) the following plot is obtained:
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As expected, the error norm for this level of noise is minimum, and it could be concluded
that the estimator can handle the presence of the noise perfectly.

11


