Intro to Observability 000 Quantifying Observability 000

Observability Properties

Controllers & Observers Design 000000 Observer-Based Control 000000

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Ahmad F. Taha

EE 5143: Linear Systems and Control

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/ataha

November 7, 2017

Intro to Observability Quantifying Observability Properties Controllers & Observers Design Observer-Rased Control 000000

- **Observability:** The ability to observer what's happening inside your system (i.e., to know system states x(t))
- Observability: In order to see what is going on inside the system under observation (i.e., output y(t)), the system must be observable. Observation: output y(t)
- Given this dynamical system:

$$\begin{array}{rcl} x(k+1) &=& Ax(k) + Bu(k), & x(0) = x_0, \\ y(k) &=& Cx(k) + Du(k), \\ \text{or } \dot{x}(t) &=& Ax(t) + Bu(t), & x(0) = x_0, \\ y(t) &=& Cx(t) + Du(t) \end{array}$$

a natural question arises: can we learn anything about x(t) given y(t) and u(t) for a specific time t?

• Clearly, if we know x(0) and u(t) for all t, we can determine x(t) via

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

• However, if x(0) if unknown, can you obtain x(t) via only y(t), u(t)?

DTLTI system (*n* states, *m* inputs, *p* outputs):

$$x(k+1) = Ax(k) + Bu(k), \quad x(0) = x_0, \tag{1}$$

$$y(k) = Cx(k) + Du(k), \qquad (2)$$

• Application: given that A, B, C, D, and u(k), y(k) are known $\forall k = 0 : 1 : k - 1$, can we determine x(0)?

Solution:

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(k-1) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{k-1} \end{bmatrix} x(0) + \begin{bmatrix} D & 0 & \dots & 0 \\ CB & D & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ CA^{k-2}B & \dots & CB & 0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(k-1) \end{bmatrix}$$

Intro to Observability	Quantifying Observability	Observability Properties	Controllers & Observers Design	Observer-Based Control	
000	000	00000	000000	000000	
Observability — 2					

$$\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(k-1) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{k-1} \end{bmatrix} x(0) + \begin{bmatrix} D & 0 & \dots & 0 \\ CB & D & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ CA^{k-2}B & \dots & CB & 0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(k-1) \end{bmatrix}$$

$$Y(k-1) = \mathcal{O}_k x(0) + \mathcal{T}_k U(k-1) \implies \mathcal{O}_k x(0) = Y(k-1) - \mathcal{T}_k U(k-1)$$

• Since $\mathcal{O}_k, \mathcal{T}_k, Y(k-1), U(k-1)$ are all known quantities, then we can find a unique x(0) iff \mathcal{O}_k is full rank

Observability Definition

DTLTI system is observable at time k if the initial state x(0) can be uniquely determined from any given

$$u(0), \ldots, u(k-1), y(0), \ldots, y(k-1).$$

Quantifying Observability

Observability Test

For a system with *n* states and *p* outputs, the test for observability is that $\begin{bmatrix} r & r \\ r & r \end{bmatrix}$

matrix
$$\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix} \in \mathbb{R}^{np \times n}$$
 has full column rank (i.e., rank(\mathcal{C}) = n).

The test is equivalent for DTLTI and CTLTI systems

Theorem

The following statements are equivalent:

• Consider a dynamical system defined by:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Is this system controllable?
- Is this system observable?
- Answers: Yes, Yes!
- MATLAB commands: ctrb, obsv

Intro to Observability	Quantifying Observability	Observability Properties	Controllers & Observers Design	Observer-Based Control
000	000	00000	000000	000000
Example 2				

Determine whether the following system is observable or not:

The challenge here is to be able to figure out which test should be used. Clearly, A has 7 evalues as follows: $\lambda_A = \{-1, -1, -1, -1, 0, 0, 0\}$. Test 2 is the easiest test to use here. Applying the test, you'll see that the PBH test fails for the zero eigenvalue, which means that the system is not observable.

Intro to Observability 000	Quantifying Observability	Observability Properties •0000	Controllers & Observers Design	Observer-Based Control
Unobservable Subspace				

- Unobservable subspace: null-space of $\mathcal{O}_k = \mathcal{N}(\mathcal{O}_k)$
- It is basically the space (i.e., set of states x ∈ X that you cannot estimate or observer
- Notice that if $x(0) \in Null(\mathcal{O}_k)$, and u(k) = 0, then the output is going to zero from [0, k 1]
- Notice that input u(k) does not impact the ability to determine x(0)
- The unobservable subspace N(O_k) is A-invariant: if z ∈ N(O_k), then Az ∈ N(O_k)

Unobservable Space

The null spaces $Null(\mathcal{O}_k) = \mathcal{N}(\mathcal{O}_k)$ satisfy

$$\mathcal{N}(\mathcal{O}_0) \supseteq \mathcal{N}(\mathcal{O}_1) \supseteq \cdots \supseteq \mathcal{N}(\mathcal{O}_n) = \mathcal{N}(\mathcal{O}_{n+1}) = \cdots$$

This means that the more output measurements you have, the smaller the unobservable subspace.

It also implies that you cannot get more information if you go above k > n. You can prove this by C-H theorem $(A^n = \sum_{i=0}^{n-1} \alpha_i A^i)$

	Intro to Observability	Quantifying Observability	Observability Properties	Controllers & Observers Design	Observer-Based Control	
	000	000	0000	000000	000000	
Detectability						

Detectability Definition

DTLTI or CTLIT system, defined by (A, C), is detectable if there exists a matrix L such that A - LC is stable.

Detectability Theorem

DTLTI or CTLIT system, defined by (A, C) is detectable if all its unobservable modes correspond to stable eigenvalues of A.

Facts:

- A is stable \Rightarrow (A, C) is detectable
- (A, C) is observable $\Rightarrow (A, C)$ is detectable as well
- (A, B) is not observable \Rightarrow it could still be detectable
- If system has some unobservable modes that are unstable, then no gain L can make A LC stable
- $\bullet \Rightarrow \mathsf{Observer}$ will fail to track system state

Intro to Observability	Quantifying Observability	Observability Properties	Controllers & Observers Design	Observer-Based Control	
000	000	00000	000000	000000	
Observability for CT Systems					

- The previous derivation for observability was for DT LTI systems
- What if we have a CT LTI system? Do we obtain the same observability testing conditions?
- Yes, we do!
- First, note that the control input u(t) plays no role in observability, just like how the output y(t) plays no role in controllability
- To see that, consider the following system with *n* states, *p* outputs, where (again) we want to obtain $x(t_0)$ (unknown):

$$\dot{x}(t) = Ax(t), \quad y(t) = Cx(t) \quad x(t_0) = x_0 \Longrightarrow$$

$$\begin{array}{rcl} y(t_0) & = & Cx(t_0) \\ \dot{y}(t_0) & = & C\dot{x}(t_0) = CAx(t_0) \\ \ddot{y}(t_0) & = & C\ddot{x}(t_0) = CA^2x(t_0) \end{array}$$

$$y^{(n-1)}(t_0) = Cx^{(n-1)}(t_0) = CA^{n-1}x(t_0)$$

• We can write the previous equation as:

$$\begin{bmatrix} y(t_0) \\ \dot{y}(t_0) \\ \ddot{y}(t_0) \\ \vdots \\ y^{(n-1)}(t_0) \end{bmatrix} Y(t_0) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x(t_0) \Rightarrow$$
$$= \mathcal{O} \in \mathbb{R}^{np \times n}$$

$$X(t_0) = \mathcal{O}^{\dagger}Y(t_0) = (\mathcal{O}^{\top}\mathcal{O})^{-1}\mathcal{O}Y(t_0)$$

- Hence, the initial conditions can be determined if the observability matrix is full column rank
- This condition is identical to the DT case where we also wanted to obtain x(k = 0) from a set of output measurements
- The difference here is that we had to obtain derivatives of the output at *t*₀
- Can you rederive the equations if u(t) ≠ 0? It won't make an impact on whether a solution exists, but it'll change x(t₀)

Duality

The CT LTI system with state-space matrices $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ is called the **dual** of another CT LTI system with state-space matrices (A, B, C, D) if

$$\tilde{A} = A^{ op}, \ \ \tilde{B} = C^{ op}, \ \ \tilde{C} = B^{ op}, \ \ \tilde{D} = D^{ op}.$$

Controllability-Observability Duality

CT system (A, B, C, D) is observable (controllable) if and only if its dual system $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ is controllable (observable).

Minimality

A system (A, B, C, D) is called minimal if and only if it is both controllable and observable.

Original system with unknown x(0):

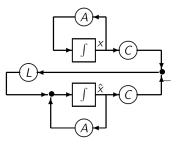
$$\dot{x} = Ax,$$

 $y = Cx$

Simulator with linear feedback:

$$\dot{\hat{x}} = A\hat{x} + L(y - \hat{y}), \quad \hat{x}(0) = 0$$

 $\hat{y} = C\hat{x}$



- Objective here is to estimate (in real-time) the state of the actual system x(t) given that ICs x(0) are not known
- To do that, we design an observer—dynamic state estimator (DSE)
- Define dynamic estimation error: $e(t) = x(t) \hat{x}(t)$
- Error dynamics:

$$\dot{e}(t) = \dot{x}(t) - \dot{\hat{x}}(t) = (A - LC)(x(t) - \hat{x}(t)) = (A - LC)e(t)$$

- Hence, e(t)
 ightarrow 0, as $t
 ightarrow \infty$ if $ext{eig}(A-LC) < 0$
- Objective: design observer/estimator gain L such that eig(A - LC) < 0 or at a certain location

- Given a system characterized by $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Is the system stable? What are the eigenvalues?
- Solution: unstable, eig(A) = 4, -2
- Find linear state-feedback gain K (i.e., u = -Kx), such that the poles of the closed-loop controlled system are -3 and -5
- Characteristic polynomial: $\lambda^2 + (k_1 2)\lambda + (3k_2 k_1 8) = 0$

• Solution:
$$u = -Kx = -[10 \ 11] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -10x_1 - 11x_2$$

• MATLAB command: $K = place(A,B,eig_desired)$

• What if
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, can we stabilize the system?

• Given a system characterized by
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, C = \begin{bmatrix} 0.5 & 1 \end{bmatrix}$$

- Find linear state-observer gain $L = [l_1 \ l_2]^{\top}$ such that the poles of the estimation error are -5 and -3
- Characteristic polynomial: $\lambda^2 + (-2 + l_2 + 0.5l_1)\lambda + (-8 + 0.5l_2 + 2.5l_1) = 0$
- Solution: $L = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$
- MATLAB command: L = place(A',C',eig_desired)

• For CT system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

- To design a stabilizing controller, find K such that

$$eig(A_{cl}) = eig(A - BK) < 0$$

or at a prescribed location

- To design a converging estimator (observer), find L such that

$$eig(A_{cl}) = eig(A - LC) < 0$$

or at a prescribed location

• What if the system is DT?

$$x(k+1) = Ax(k) + Bu(k), \quad y(k) = Cx(k) + Du(k)$$

- To design a stabilizing controller, find K such that

 $-1 < eig(A_{cl}) = eig(A - BK) < 1$ or at a prescribed location

- To design a converging estimator (observer), find L such that

$$-1 < {\it eig}(A_{\it cl}) = {\it eig}(A-LC) < 1$$
 or at a prescribed location

• What if the system dynamics are:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

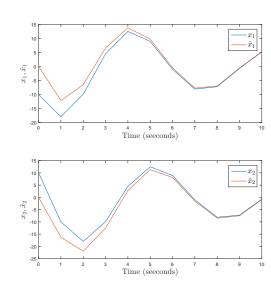
• The observer dynamics will then be:

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t))$$

- Hence, the control input shouldn't impact the estimation error
- Why? Because the input u(t) is know!
- Estimation error:

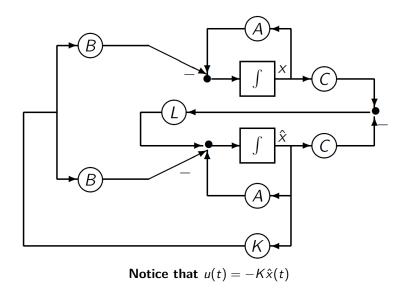
$$e(t) = x(t) - \hat{x}(t) \Longrightarrow \dot{e}(t) = \dot{x}(t) = \dot{x}(t) = (A - LC)(x(t) - \hat{x}(t))$$
$$\Longrightarrow \dot{e}(t) = (A - LC)e(t)$$

Intro to Observability 000	Quantifying Observability 000	Observability Properties	Controllers & Observers Design	Observer-Based Control
MATLAB	Example			



A = [1 - 0.8; 1 0];B=[0.5; 0];C = [1 -1];% Selecting desired poles eig_desired=[.5 .7]; L=place(A',C',eig_desired)'; % Initial state x = [-10; 10];% Initial estimate xhat=[0;0]; % Dynamic Simulation XX=x; XXhat=xhat; T=10; % Constant Input Signal UU=.1*ones(1,T);for k=0:T-1. u=UU(k+1): v=C*x: vhat=C*xhat: x=A*x+B*u: xhat=A*xhat+B*u+L*(y-yhat); XX=[XX.x]: XXhat=[XXhat, xhat]: end % Plotting Results subplot(2,1,1) plot(0:T,[XX(1,:);XXhat(1,:)]); subplot(2,1,2) plot(0:T,[XX(2,:);XXhat(2,:)]);

- Recall that for LSF control: u(t) = -Kx(t)
- What if x(t) is not available, i.e., it can only be estimated?
- **Solution:** get \hat{x} by designing *L*
- Apply LSF control using \hat{x} with a LSF matrix K to both the original system and estimator
- **Question:** how to design *K* and *L* simultaneously? Poles of the closed-loop system?
- This is called an observer-based controller (OBC)
- Design questions: how shall we design K and L? Are these designs independent?



Closed-loop dynamics:

$$\begin{aligned} \dot{x}(t) &= Ax(t) - BK\hat{x}(t) \\ \dot{\hat{x}}(t) &= A\hat{x}(t) + L(y(t) - \hat{y}(t)) - BK\hat{x}(t) \end{aligned}$$

• The overall system (observer + controller) can be written as follows:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{\hat{x}}(t) \end{bmatrix}$$
• Transformation:
$$\begin{bmatrix} x(t) \\ e(t) \end{bmatrix} = \begin{bmatrix} x(t) \\ x(t) - \hat{x}(t) \end{bmatrix} = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{\hat{x}}(t) \end{bmatrix}$$
• Hence, we can write:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{e}(t) \end{bmatrix} = \underbrace{ \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix}}_{A_{\rm cl}} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix}$$

 If the system is controllable & observable ⇒ eig(A_{cl}) can be arbitrarily assigned by proper K and LWhat if the system is stabilizable and detectable?

Intro to Observability 000	Quantifying Observability 000	Observability Properties	Controllers & Observers Design	Observer-Based Control
Separation	Principle			

$$\begin{bmatrix} \dot{x}(t) \\ \dot{e}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix}}_{A_{cl}} \begin{bmatrix} x(t) \\ e(t) \end{bmatrix} \equiv \begin{bmatrix} \dot{x}(t) \\ \dot{x}(t) \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$$

- Notice the above dynamics for the OBC are equivalent
- What are the evalues of the closed loop system above?
- Since A_{cl} is block diagonal, the evalues of A_{cl} are

$$eig(A - BK) \bigcup eig(A - LC)$$

- eig(A BK) characterizes the state control dynamics
- eig(A BK) characterizes the state estimation dynamics
- If the system is obsv. **AND** cont. \implies evalues(A_{cl}) can be arbitrarily assigned by properly designing K and L
- If the system is detect. **AND** stab. \implies evalues(A_{cl}) can be stabilized via properly designing K and L

Intro to Observability 000	Quantifying Observability	Observability Properties 00000	Controllers & Observers Design	Observer-Based Control
OBC Exar	nnle			

Design an OBC (i.e., $u(t) = -K\hat{x}(t)$) for the following SISO system

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

- Before doing anything, check whether system is cont. (or stab.) and obs. (or det.): system is cont. AND obs.
- **2** First, design a stabilizing state feedback control, i.e., find K s.t.

$$eig(A-BK) < 0, A-BK = egin{bmatrix} 0 & 1 \ -k_1 & -k_2 \end{bmatrix} \Rightarrow K = egin{bmatrix} 4 & 2 \end{bmatrix}$$
 does the job

Second, design a stabilizing observer (estimator), i.e., find L s.t.

$$eig(A-LC) < 0, A-LC = egin{bmatrix} -l_1 & 1 \ -l_2 & 0 \end{bmatrix} \Rightarrow L = egin{bmatrix} 10 & 100 \end{bmatrix}^ op$$
 does the job

Finally, overall system design:

$$\begin{array}{rcl} u(t) &=& -K \hat{x}(t) = -4 \hat{x}_1(t) - 2 \hat{x}_2(t) \\ \dot{\hat{x}}_1(t) &=& \hat{x}_2(t) + 10(y(t) - \hat{x}_1(t)) \\ \dot{\hat{x}}_2(t) &=& u(t) + 100(y(t) - \hat{x}_1(t)) \end{array}$$

Intro to Observability Quantifying Observability 000 000

Observability Properties

Controllers & Observers Design 000000 Observer-Based Control

Questions And Suggestions?

Thank You!

Please visit

engineering.utsa.edu/ataha IFF you want to know more ©