
Intro to Observability Quantifying Observability Observability Properties Controllers & Observers Design Observer-Based Control

Module 08
Observability and State Estimator Design of

Dynamical LTI Systems

Ahmad F. Taha

EE 5143: Linear Systems and Control
Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/ataha

November 7, 2017

©Ahmad F. Taha Module 08 — Observability and State Estimator Design of Dynamical LTI Systems 1 / 24

http://engineering.utsa.edu/ataha


Intro to Observability Quantifying Observability Observability Properties Controllers & Observers Design Observer-Based Control

Introduction to Observability
Observability: The ability to observer what’s happening inside your
system (i.e., to know system states x(t))
Observability: In order to see what is going on inside the system
under observation (i.e., output y(t)), the system must be
observable. Observation: output y(t)
Given this dynamical system:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) + Du(k),
or ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t)
a natural question arises: can we learn anything about x(t) given
y(t) and u(t) for a specific time t?
Clearly, if we know x(0) and u(t) for all t, we can determine x(t) via

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ)dτ

However, if x(0) if unknown, can you obtain x(t) via only y(t), u(t)?
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Observability — 1

DTLTI system (n states, m inputs, p outputs):

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (1)
y(k) = Cx(k) + Du(k), (2)

Application: given that A,B,C ,D, and u(k), y(k) are known
∀k = 0 : 1 : k − 1, can we determine x(0)?

Solution:
y(0)
y(1)

...
y(k − 1)

 =


C
CA

...
CAk−1

 x(0)+


D 0 . . . 0

CB D
. . .

...
...

. . . . . . 0
CAk−2B . . . CB 0




u(0)
u(1)

...
u(k − 1)
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Observability — 2


y(0)
y(1)

...
y(k − 1)

 =


C
CA

...
CAk−1

 x(0) +


D 0 . . . 0

CB D
. . .

...
...

. . . . . . 0
CAk−2B . . . CB 0




u(0)
u(1)

...
u(k − 1)


Y (k − 1) = Okx(0) + TkU(k − 1) =⇒ Okx(0) = Y (k − 1)−TkU(k − 1)

Since Ok , Tk ,Y (k − 1),U(k − 1) are all known quantities, then we
can find a unique x(0) iff Ok is full rank

Observability Definition
DTLTI system is observable at time k if the initial state x(0) can be
uniquely determined from any given

u(0), . . . , u(k − 1), y(0), . . . , y(k − 1).
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Quantifying Observability

Observability Test
For a system with n states and p outputs, the test for observability is that

matrix O =


C
CA

...
CAn−1

 ∈ Rnp×n has full column rank (i.e., rank(C) = n).

The test is equivalent for DTLTI and CTLTI systems

Theorem
The following statements are equivalent:

1 O is full rank, system is observable
2 PBH Test: for any λ ∈ C, rank

[
λI − A

C

]
= n

3 Eigenvector Test: for any right evector of A, Cvi 6= 0
4 The following matrices are nonsingular

n−1∑
i=0

(A>)iC>CAi (DTLIT) &
∫ t

0
eA>τ C>CeAτ dτ (CTLTI)
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Example 1

Consider a dynamical system defined by:

A =

1 −1 0
1 −1 0
0 0 0

 ,B =

1 0
0 0
0 1

 ,C =
[

0 1 0
0 0 1

]

Is this system controllable?

Is this system observable?

Answers: Yes, Yes!

MATLAB commands: ctrb, obsv
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Example 2

Determine whether the following system is observable or not:

x(k + 1) =



−1 1 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 −1 −1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


x(k) +



0
1
−1
1
1
0
2


u(k)

y(k) =
[

1 0 2 0 0 0 0
0 0 0 2 3 0 0

]
x(k).

The challenge here is to be able to figure out which test should be used.
Clearly, A has 7 evalues as follows: λA = {−1,−1,−1,−1, 0, 0, 0}. Test
2 is the easiest test to use here. Applying the test, you’ll see that the
PBH test fails for the zero eigenvalue, which means that the system is
not observable.
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Unobservable Subspace
Unobservable subspace: null-space of Ok = N (Ok)
It is basically the space (i.e., set of states x ∈ X that you cannot
estimate or observer
Notice that if x(0) ∈ Null(Ok), and u(k) = 0, then the output is
going to zero from [0, k − 1]
Notice that input u(k) does not impact the ability to determine x(0)
The unobservable subspace N (Ok) is A-invariant: if z ∈ N (Ok),
then Az ∈ N (Ok)

Unobservable Space
The null spaces Null(Ok) = N (Ok) satisfy

N (O0) ⊇ N (O1) ⊇ · · · ⊇ N (On) = N (On+1) = · · ·

This means that the more output measurements you have, the smaller
the unobservable subspace.
It also implies that you cannot get more information if you go above
k > n. You can prove this by C-H theorem (An =

∑n−1
i=0 αiAi )
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Detectability

Detectability Definition
DTLTI or CTLIT system, defined by (A,C), is detectable if there exists a
matrix L such that A− LC is stable.

Detectability Theorem
DTLTI or CTLIT system, defined by (A,C) is detectable if all its
unobservable modes correspond to stable eigenvalues of A.

Facts:
A is stable ⇒ (A,C) is detectable

(A,C) is observable ⇒ (A,C) is detectable as well

(A,B) is not observable ⇒ it could still be detectable

If system has some unobservable modes that are unstable, then no
gain L can make A− LC stable

⇒ Observer will fail to track system state
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Observability for CT Systems
The previous derivation for observability was for DT LTI systems
What if we have a CT LTI system? Do we obtain the same
observability testing conditions?
Yes, we do!
First, note that the control input u(t) plays no role in observability,
just like how the output y(t) plays no role in controllability
To see that, consider the following system with n states, p outputs,
where (again) we want to obtain x(t0) (unknown):

ẋ(t) = Ax(t), y(t) = Cx(t) x(t0) = x0 =⇒

y(t0) = Cx(t0)
ẏ(t0) = Cẋ(t0) = CAx(t0)
ÿ(t0) = Cẍ(t0) = CA2x(t0)

...
y (n−1)(t0) = Cx (n−1)(t0) = CAn−1x(t0)
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Observability for CT LTI Systems — 2
We can write the previous equation as:

y(t0)
ẏ(t0)
ÿ(t0)

...
y (n−1)(t0)

Y (t0) =


C
CA

...
CAn−1


︸ ︷︷ ︸
=O∈Rnp×n

x(t0)⇒

x(t0) = O†Y (t0) = (O>O)−1OY (t0)
Hence, the initial conditions can be determined if the observability
matrix is full column rank
This condition is identical to the DT case where we also wanted to
obtain x(k = 0) from a set of output measurements
The difference here is that we had to obtain derivatives of the
output at t0
Can you rederive the equations if u(t) 6= 0? It won’t make an
impact on whether a solution exists, but it’ll change x(t0)
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Controllability-Observability Duality, Minimality

Duality

The CT LTI system with state-space matrices (Ã, B̃, C̃ , D̃) is called the
dual of another CT LTI system with state-space matrices (A,B,C ,D) if

Ã = A>, B̃ = C>, C̃ = B>, D̃ = D>.

Controllability-Observability Duality
CT system (A,B,C ,D) is observable (controllable) if and only if its dual
system (Ã, B̃, C̃ , D̃) is controllable (observable).

Minimality
A system (A,B,C ,D) is called minimal if and only if it is both
controllable and observable.
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Observer Design

Objective here is to estimate (in real-time) the state of the actual
system x(t) given that ICs x(0) are not known
To do that, we design an observer—dynamic state estimator (DSE)
Define dynamic estimation error: e(t) = x(t)− x̂(t)
Error dynamics:

ė(t) = ẋ(t)− ˙̂x(t) = (A− LC)(x(t)− x̂(t)) = (A− LC)e(t)
Hence, e(t)→ 0, as t →∞ if eig(A− LC) < 0
Objective: design observer/estimator gain L such that
eig(A− LC) < 0 or at a certain location
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Example — Controller Design

Given a system characterized by A =
[

1 3
3 1

]
,B =

[
1
0

]
Is the system stable? What are the eigenvalues?

Solution: unstable, eig(A) = 4,−2

Find linear state-feedback gain K (i.e., u = −Kx), such that the
poles of the closed-loop controlled system are −3 and −5

Characteristic polynomial: λ2 + (k1 − 2)λ+ (3k2 − k1 − 8) = 0

Solution: u = −Kx = −[10 11]
[
x1
x2

]
= −10x1 − 11x2

MATLAB command: K = place(A,B,eig desired)

What if A =
[

1 0
0 1

]
,B =

[
1
1

]
, can we stabilize the system?
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Example — Observer Design

Given a system characterized by A =
[

1 3
3 1

]
,C =

[
0.5 1

]
Find linear state-observer gain L = [l1 l2]> such that the poles of the
estimation error are −5 and −3

Characteristic polynomial:
λ2 + (−2 + l2 + 0.5l1)λ+ (−8 + 0.5l2 + 2.5l1) = 0

Solution: L =
[

8
6

]
MATLAB command: L = place(A’,C’,eig desired)
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Observer, Controller Design for DT Systems—Summary
For CT system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
– To design a stabilizing controller, find K such that

eig(Acl ) = eig(A− BK ) < 0
or at a prescribed location

– To design a converging estimator (observer), find L such that
eig(Acl ) = eig(A− LC) < 0

or at a prescribed location
What if the system is DT?

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k)
– To design a stabilizing controller, find K such that

−1 < eig(Acl ) = eig(A− BK ) < 1 or at a prescribed location
– To design a converging estimator (observer), find L such that

−1 < eig(Acl ) = eig(A− LC) < 1 or at a prescribed location
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Observer Design

What if the system dynamics are:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

The observer dynamics will then be:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− ŷ(t))

Hence, the control input shouldn’t impact the estimation error
Why? Because the input u(t) is know!
Estimation error:

e(t) = x(t)− x̂(t) =⇒ ė(t) = ẋ(t) = ˙̂x(t) = (A− LC)(x(t)− x̂(t))

=⇒ ė(t) = (A− LC)e(t)
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MATLAB Example

Time (seeconds)
0 1 2 3 4 5 6 7 8 9 10

x
1
,
x̂
1

-20

-15

-10

-5

0

5

10

15

x1

x̂1

Time (seeconds)
0 1 2 3 4 5 6 7 8 9 10

x
2
,
x̂
2

-25

-20

-15

-10

-5

0

5

10

15

x2

x̂2

A=[1 -0.8; 1 0];
B=[0.5; 0];
C=[1 -1];
% Selecting desired poles
eig_desired=[.5 .7];
L=place(A’,C’,eig_desired)’;
% Initial state
x=[-10;10];
% Initial estimate
xhat=[0;0];
% Dynamic Simulation
XX=x;
XXhat=xhat;
T=10;
% Constant Input Signal
UU=.1*ones(1,T);
for k=0:T-1,
u=UU(k+1);
y=C*x;
yhat=C*xhat;
x=A*x+B*u;
xhat=A*xhat+B*u+L*(y-yhat);
XX=[XX,x];
XXhat=[XXhat,xhat];
end
% Plotting Results
subplot(2,1,1)
plot(0:T,[XX(1,:);XXhat(1,:)]);
subplot(2,1,2)
plot(0:T,[XX(2,:);XXhat(2,:)]);
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Observer-Based Control — 1

Recall that for LSF control: u(t) = −Kx(t)

What if x(t) is not available, i.e., it can only be estimated?

Solution: get x̂ by designing L

Apply LSF control using x̂ with a LSF matrix K to both the original
system and estimator

Question: how to design K and L simultaneously? Poles of the
closed-loop system?

This is called an observer-based controller (OBC)

Design questions: how shall we design K and L? Are these designs
independent?
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Observer-Based Control — 2

Notice that u(t) = −Kx̂(t)
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Observer-Based Control — 3
Closed-loop dynamics:

ẋ(t) = Ax(t)− BKx̂(t)
˙̂x(t) = Ax̂(t) + L(y(t)− ŷ(t))− BKx̂(t)

The overall system (observer + controller) can be written as follows:[
ẋ(t)
˙̂x(t)

]
=
[

A −BK
LC A− LC − BK

] [
x(t)
x̂(t)

]
Transformation:

[
x(t)
e(t)

]
=
[

x(t)
x(t)− x̂(t)

]
=
[
I 0
I −I

] [
x(t)
x̂(t)

]
Hence, we can write:[

ẋ(t)
ė(t)

]
=
[
A− BK BK

0 A− LC

]
︸ ︷︷ ︸

Acl

[
x(t)
e(t)

]

If the system is controllable & observable ⇒ eig(Acl) can be
arbitrarily assigned by proper K and LWhat if the system is
stabilizable and detectable?
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Separation Principle

[
ẋ(t)
ė(t)

]
=
[
A− BK BK

0 A− LC

]
︸ ︷︷ ︸

Acl

[
x(t)
e(t)

]
≡

[
ẋ(t)
˙̂x(t)

]
=
[

A −BK
LC A− LC − BK

] [
x(t)
x̂(t)

]

Notice the above dynamics for the OBC are equivalent
What are the evalues of the closed loop system above?
Since Acl is block diagonal, the evalues of Acl are

eig(A− BK )
⋃

eig(A− LC)

eig(A− BK ) characterizes the state control dynamics
eig(A− BK ) characterizes the state estimation dynamics
If the system is obsv. AND cont. =⇒ evalues(Acl ) can be arbitrarily
assigned by properly designing K and L
If the system is detect. AND stab. =⇒ evalues(Acl ) can be
stabilized via properly designing K and L
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OBC Example
Design an OBC (i.e., u(t) = −Kx̂(t)) for the following SISO system

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
u(t), y(t) =

[
1 0

]
x(t)

1 Before doing anything, check whether system is cont. (or stab.) and
obs. (or det.): system is cont. AND obs.

2 First, design a stabilizing state feedback control, i.e., find K s.t.

eig(A−BK ) < 0,A−BK =
[

0 1
−k1 −k2

]
⇒ K =

[
4 2

]
does the job

3 Second, design a stabilizing observer (estimator), i.e., find L s.t.

eig(A−LC) < 0,A−LC =
[
−l1 1
−l2 0

]
⇒ L =

[
10 100

]> does the job

4 Finally, overall system design:
u(t) = −Kx̂(t) = −4x̂1(t)− 2x̂2(t)
˙̂x1(t) = x̂2(t) + 10(y(t)− x̂1(t))
˙̂x2(t) = u(t) + 100(y(t)− x̂1(t))
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/ataha
IFF you want to know more ,
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