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Controllability Introduction
A CT LTI system with m inputs and n states is defined as follows:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

Controllability: the ability to move a system (i.e., its states x(t))
from one point in space to another via certain control signals u(t)

Rigorous definition: Over the time interval [0, tf ], control input
u(t) ∀ t ∈ [0, tf ] steers the state from x0 to xtf :

x(tf ) = eAtf x0 +
∫ tf

0
eA(t−τ)Bu(τ) dτ

Controllability Definition
LTI system is controllable at time tf > 0 if for any initial state and for
any target state (xtf ), a control input u(t) exists that can steer the
system states from x(0) to x(tf ) over the defined interval.
LTI system is called controllable if it is controllable at a large enough tf .
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Example

Consider this dynamical system

ẋ(t) =
[

0 0
0 0

]
x(t) +

[
1
1

]
u(t), x0 = 0

Is this system controllable?
Well, clearly

x1(t) = x2(t) =
∫ t

t0

u(τ)dτ

Hence, no control input can steer the system to x1(t) 6= x2(t), i.e., to
distinct x1 and x2. Hence, the system is NOT controllable.
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Controllability Questions

Four main questions are asked when solving controllability-related
problems:

1 Where can we transfer x0 for a time horizon [0, tf ]?
2 If answer to 1) above is doable, how do we choose the control u(t)

for the specified time horizon?
3 How quickly can x0 be transferred to xf ?
4 What is a low-cost u(t) that does this operation?

– We’ll try answer some of these questions
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Reachability vs. Controllability

Reachability is a concept similar to controllability
Consider an LTI system with zero initial condition x0 = 0:

ẋ(t) = Ax(t) + Bu(t)

Reachability: The above system is called reachable at time tf if
the system can be steered from x0 = 0 to any xf over the time
interval [0, tf ]
Theorem: At any tf > 0, the system is controllable if and only if
it is reachable
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Reachable Set, Subspace

Definition of Reachable Set
The reachable set at time tf > 0 is the set of states the system can be
steered to using arbitrary control inputs over [0, tf ]:

Rtf =
{∫ tf

0
eA(tf−τ)Bu(τ)dτ

∣∣∣∣ u(t), 0 ≤ t ≤ tf

}
System is reachable at tf if Rtf = Rn

Hence, we can say that Rtf is a subspace of Rn

Rtf is the image of the linear map taking u(t) as input and
producing xtf as output
Also, note that Rtf ⊂ Rtf 2 , tf < tf 2

– What does that mean? It means that if you give the system more
time, it’ll be able to reach more states in Rn

Reachable subspace—set of all reachable states, i.e., the union of
all reachable sets:

R =
⋃

tf>0
Rtf
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Controllability of DT LTI Systems

Consider the following DT LTI system:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0

Recall that given a final time kf and corresponding u(k), x(kf ) can
be written as:

xf = x(kf ) = Akf x0 +
kf−1∑
j=0

Akf−1−jBu(j)

DT Controllability Definition
The above system is controllable at time kf if for any x0, xf ∈ Rn, a
control u(k),∀k = 0, . . . , kf − 1 exists that can steer the system from x0
to xf at time kf

The system is called controllable if it is controllable at a large kf
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DT Reachable Set, Subspace

Definition of Reachable Set
The reachable set at time kf > 0 is the set of states the system can be
steered to using arbitrary control inputs over [0, tf ]:

Rtf =
{kf−1∑

j=0
Akf−1−jBu(j)

∣∣∣∣∣ u(k), k = 0, 1, . . . , kf − 1
}

System is reachable at kf if Rkf = Rn

Hence, we can say that Rkf is a subspace of Rn

Rkf is the image of the linear map taking u(t) as input and
producing xkf as output
Also, note that Rkf ⊂ Rkf 2 , kf < kf 2

– What does that mean? It means that if you give the system more
time, it’ll be able to reach more states in Rn

Reachable subspace—set of all reachable states:

R =
⋃

kf>0
Rkf
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Characterizing Controllability

So, we defined controllability for both CT and DT LTI systems
But how do we figure out whether a system is controllable/reachable
or not?
Is there a litmus test given state-space matrices? Yes!
Consider this DT system x(k + 1) = Ax(k) + Bu(k)
Let’s answer the question of controllability and try find u(k) that
would steer x0 = 0 to a predefined x(kf ) = x(n) = xn

If we can find this u(k) for all k = 0, 1, . . . , kf − 1, then the system
is controllable/reachable
n here is also the size of the state x, i.e., we have n controls to reach
our desired state
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Controllability Test Derivation

x(k + 1) = Ax(k) + Bu(k)
Notice that:

x(1) = Ax(0) + Bu(0)
x(2) = A2x(0) + ABu(0) + Bu(1)

... =
...

x(n) = Anx(0) + An−1Bu(0) + An−2Bu(1) + . . .Bu(n − 1)
Since xn, x0 are both predefined (or predetermined), we want to find a
control sequence u(0), u(1), . . . , u(n − 1) such that the system is
controllable. We can write the above system of equations as:

x(n)− Anx(0) =
[
B AB A2B . . . An−1B

]


u(n − 1)
u(n − 2)

...
u(0)

 = C


u(n − 1)
u(n − 2)

...
u(0)
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Controllability Test Derivation (Cont’d)

If this matrix C defined in the previous slide is full rank, the previous
equation can be written as:

u(n − 1)
u(n − 2)

...
u(0)

 = C†(x(n)− Anx(0))

Matrix C: controllability matrix
If the system is single input, C would be square and the † sign would
be replaced by −1 (the inverse of square matrix)
If the system is multi input (m inputs), C would be rectangular of
dimension n × (m · n) (hence, we need a right inverse to find the
pseudo inverse)
Hence: the LTI system x(k + 1) = Ax(k) + Bu(k) is controllable
if the matrix C is full rank
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Cayley-Hamilton Theorem and Controllability

For a general n × n matrix A, the Cayley-Hamilton theorem states that

p(A) = An + cn−1An−1 + · · ·+ c1A + c0In = 0

This means that the n-th power of A can be written as a linear
combination of the lower powers of A, where ci ’s are constants
This also means that A satisfies the characteristic polynomial

– For a matrix A, the evalue equation is

πA(λ) = |λIn − A| = 0⇒ λn + cn−1λ
n−1 + . . . c0 = 0

– Replacing λ with A, you’ll obtain the Cayley-Hamilton theorem
How does that relate to controllability?
It implies that for k ≥ n, you don’t get more information from the
system
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Controllability Tests

Controllability Test
For a system with n states and m inputs, controllability test:

C =
[
B AB A2B · · · An−1B

]
∈ Rn×nm

has full row rank (i.e., rank(C) = n).

The following statements and tests for controllability are equivalent:
T1 C is full rank
T2 PBH Test: for all λi ∈ eig(A), rank [λi I − A B] = n
T3 Eigenvector Test: for any left evector wi of A, w>i B 6= 0
T4 For any tf > 0, the so-called Gramian matrix is nonsingular:

W (tf ) =
∫ tf

0
eAτBB>eA>τ dτ =

∫ tf

0
eA(tf−τ)BB>eA>(tf−τ) dτ

T4’ For DT systems, for any n > 0, the Gramian is nonsingular:

W (n − 1) =
n−1∑
m=0

AmBB>(A>)m
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Left and Right Eigenvectors

We know how to solve for eigenvectors of any square matrix:

(A− λi I)vi = 0

This definition for eigenvector above is called the right eigenvector
The left evector of a matrix is defined as:

w>i (A− λi I) = 0

They are of course related:

A = TDT−1 =
[
v1 v2 · · · vn

]

λ1

λ2
...
λn




w>1 ————
w>2 ————

...
w>n ————


Controllability Test 1 uses the left eigenvectors instead of the right
ones:

- For any left evector wi of A, w>i B 6= 0
©Ahmad F. Taha Module 07 — Controllability and Controller Design of Dynamical LTI Systems 14 / 34



Intro to Controllability DT Systems Controllability Controllability Tests Design of Controllers, Stabilizability

Example 1 — Tests 1, 2, and 3

Now that we’ve talked about the idea of controllability, let’s see how
that relates to examples of LTI systems
Are these systems controllable? Uncontrollable?

Example 1: A =

 0 1 0
0 0 1
−1 −2 −3

 ,B =

0
0
1


This the above system controllable? Use Test 1
Solution: find the controllability matrix

C = [B AB A2B] =

0 0 1
0 1 −3
1 −3 7


This matrix is full rank ⇒ system is controllable via Test 1
Try Test 2: find all the evalues of A, and check that λi ∈ eig(A),
rank [λi I − A B] = 3 for λ1,2,3

Try Test 3 for the three evectors of A, we have vT
i B 6= 0 for v1,2,3
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Example 2 — Test 1
Investigate the controllability of this system

A = diag(λ1, λ2, λ3),B =

b1
b2
b3


The controllability matrix is:

C =
[
B AB A2B

]
=

b1 λ1b1 λ2
1b1

b2 λ2b2 λ2
2b2

b3 λ3b3 λ2
3b3


If bi = 0 for some i , rank C < 3
We should investigate C further. Notice that:

C =
[

b1 λ1b1 λ2
1b1

b2 λ2b2 λ2
2b2

b3 λ3b3 λ2
3b3

]
→

b1 λ1b1 λ2
1b1

0 (λ2 − λ1)b2 (λ2
2 − λ2

1)b2
0 0 (λ2

3 − λ2
1)b3 − (λ2

2 − λ2
1) λ3−λ1

λ2−λ1
b3 = (λ3 − λ1)(λ3 − λ2)b3


Final conclusion: The system is controllable if and only if bi 6= 0∀i
and λi 6= λj for all i 6= j
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Example 3 — Test 4
Via the controllability Gramian test, prove that this CT LTI system
is controllable

A =
[

0 1
0 0

]
,B =

[
0
1

]
, eAt = I + At =

[
1 t
0 1

]
Recall that the system is controllable if for any tf > 0, the so-called
Gramian matrix is nonsingular:

W (tf ) =
∫ tf

0
eAτBB>eA>τ dτ

In this example:

W (tf ) =
∫ tf

0
eAτBB>eA>τ dτ =

∫ tf

0

[
1 τ
0 1

] [
0
1

] [
0 1

] [1 0
τ 1

]
dτ =∫ tf

0

[
τ
1

] [
τ 1

]
dτ =

∫ tf

0

[
τ 2 τ
τ 1

]
dτ =

[
t3
f · 1/3 0.5t2

f
0.5t2

f tf

]
= W (tf )

For W (tf ) to be nonsingular, we need t3
f > 0, and

t4
f · (1/3)− (0.5t2

f )(0.5t2
f ) > 0 which is always true for tf > 0
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Design of Controllers

We talked about controllability
We also know whether any LTI system is controllable or not
But what we don’t know is how to design a controller that would
move my x(t0) to an x(tf ) of my choice
How can we do that?

– For DT control systems, we saw how we can do that
– The answer is more complicated
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Design of Controllers via Controllability Gramian
So, say that the system is controllable (DT or CT LTI system)
How can I find the control law u(t) that would take me from any
x(t0) to x(tf )?
The controllability Gramian allows you to achieve that

Control Design Via the Gramian
For any x(0) = x0, and x(tf ) = xtf , the control input law:

u(t) = −B>eA>(tf−t)W−1(tf )
[
eAtf x0 − xtf

]
= −B>eA>(tf−t)

(∫ tf

0
eAτBB>eA>τ dτ

)−1 [
eAtf x0 − xtf

]
, ∀t = [0, tf ]

will transfer x0 to xtf at t = tf .

You can prove the above theorem by simply substituting u(t) into

x(t) = eAtx(0) +
∫ tf

0
eA(t−τ)Bu(τ) dτ
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Design of State Feedback Controllers
In the previous slide, we addressed the question of transfer states
from one location to another
Another question can be to simply stabilize the system
Assume that the system has some +ve evalues ⇒ unstable system
Solution: design a controller that stabilizes the system
A question that pertains to controllability is to design a state
feedback controller for the LTI system

ẋ(t) = Ax(t) + Bu(t), x ∈ Rn, u ∈ Rm

A state feedback control problem takes the following form:

find matrix K ∈ Rm×n such that u(t) = −Kx(t) is the control law

Hence, system dynamics become

ẋ(t) = (A− BK )x(t)

State feedback control objective:
find K such that (A− BK ) has eigenvalues in the LHP
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Schematic for State Feedback Control

Since u(t) = −Kx(t), the updated dynamics of the system become:

ẋ(t) = Ax(t) + Bu(t) = (A− BK )x(t) = Aclx(t)
y(t) = Cx(t) + Du(t) = (C − DK )x(t) = Cclx(t)

where ‘cl’ denotes the ”closed-loop” system.
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Example — Controller Design

Given a system characterized by A =
[

1 3
3 1

]
,B =

[
1
0

]
Is the system stable? What are the eigenvalues?
Solution: unstable, eig(A) = 4,−2
Find linear state-feedback gain K (i.e., u = −Kx), such that the
poles of the closed-loop controlled system are −3 and −5
Solution: n = 2 and m = 1⇒ K ∈ R2×1 =

[
k1 k2

]
What is Acl = A− BK?

A−BK =
[

1 3
3 1

]
−
[

1
0

] [
k1 k2

]
=
[

1 3
3 1

]
−
[
k1 k2
0 0

]
=
[

1− k1 3− k2
3 1

]
Characteristic polynomial: λ2 + (k1 − 2)λ+ (3k2 − k1 − 8) = 0
What to do next? Say that you want the desired closed loop poles
to be at λ1 = −3 and λ2 = −5
Then the characteristic polynomial for Acl should be
(λ+3)(λ+5) = λ2+8λ+15 = 0 ≡ λ2+(k1−2)λ+(3k2−k1−8) = 0

Solution: u(t) = −Kx(t) = −[10 11]
[
x1(t)
x2(t)

]
= −10x1(t)−11x2(t)
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Example 2

In the previous example, we designed a state feedback controller
that stabilizes the initially unstable system
That system was a CT system, but the analysis remains the same for
DT systems (you want the eigenvalues to be: |λcl < 1|)

Example 2—What if A =
[

1 0
0 1

]
,B =

[
1
1

]
, can we stabilize the

system?
The answer is: NO!
Why? Because the system is not controllable, as

C =
[
B AB

]
=
[

1 1
1 1

]
which has rank 1, and A has two unstable

evalues (both at λ = 1), hence I can only stabilize one eigenvalue,
but cannot stabilize both
That means there is no way I can find K =

[
k1 k2

]
such that Acl is

asymptotically stable with stable evalues
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Example 3

ẋ(t) =

0 0 0
1 0 0
0 1 0

 x(t) +

1
0
0

 u(t)

Problem: this system is unstable (λ1,2,3 = 0)
Solution: design a state feedback controller u(t) = −[k1 k2 k3]x(t)
that would shift the eigenvalues of the system to λ1,2,3 = −1 (i.e.,
stable location)
First, find Acl :

Acl = A− BK =

−k1 −k2 −k3
1 0 0
0 1 0


Second, find the characteristic polynomial of Acl and equate it with
the desired location of evalues:

λ3 + k1λ
2 + k2λ+ k3 ≡ (λ+ 1)3 = λ3 + 3λ2 + 3λ+ 1 = 0

Hence, K =
[
3 3 1

]
solves this problem and ensures that all the

closed loop system evalues are at −1 (check evalues(A− BK ))
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Stabilizability

Controllability is a very strong property for LTI systems to satisfy
Imagine a huge system with 1000s of states
Controllability would mean that all of the 1000s of states can be
arbitrarily reached by certain controls
Most large systems are not controllable—you cannot simply place all
the poles in a location of your own
Stabilizability—a key property of dynamical systems—is a
relaxation from the often not satisfied controllability condition

Stabilizability Theorem
A system with state-space matrices (A,B) is called stabilizable if there
exist a state feedback matrix K such that the closed-loop system A−BK
is stable
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Stabilizability — 2

Stabilizability Theorem
A system with state-space matrices (A,B) is called stabilizable if there
exist a state feedback matrix K such that the closed-loop system A−BK
is stable

Difference between pole placement and stabilizability theorems is
that the former assigns any locations for the eigenvalues, whereas
stabilizability only guarantees that the closed loop system is stable
If A is stable ⇒ (A,B) is stabilizable
If (A,B) is controllable ⇒ it is stabilizable
If (A,B) is not controllable, it could still be stabilizable
Stabilizability means the following:

– A system has n evalues: k are stable and n − k are unstable
– Stabilizability implies that the n − k unstable evalues can be

placed in a stable location
– What about the other k stable ones? Well, some of them can be

placed in a different location, but stabilizability does not guarantee
that—it only ensures that unstable evalues can be stabilized
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Example

Is the pair A =

−2 1 1
0 −2 1
0 0 0

 ,B =

1
0
0

 controllable? Stabilizable?

The controllability matrix is

C =
[
B AB A2B

]
=

1 −2 4
0 0 0
0 0 0


which has rank 1. Hence, the system is not controllable.
Stabilizability: Notice that we have two distinct eigenvalues
(λ1,2 = −2 and λ3 = 0)
PBH test tells us λ3 = 0 which is the not asymptotically stable
evalue fails the rank condition:

rank([λ3I − A , B]) = 2 < 3

Therefore, eigenvalue 0 cannot be placed in a stable location in the
LHP
Hence, the system is not stabilizable
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Example

Consider the following system:

ẋ1(t) = x1(t)
ẋ2(t) = u(t)

Is the system controllable? Stabilizable?
Clearly, the system is not controllable—is it stabilizable? Let’s see
There are many ways to do that
You can check if the unstable eigenvalues satisfy PBH test, or you
can find A− BK and see if such gain matrix exists

So: Acl = A− BK =
[

1 0
−k1 −k2

]
⇒ eig(Acl ) = λ1,2 = 1,−k2

Hence, for any gain matrix K (k1, k2), one of the eigenvalues of A
will always be equal to 1, which is unstable
Therefore, the system is not stabilizable and not controllable
What if ẋ1(t) = −x1(t)? Would the system be controllable?
Stabilizable?

©Ahmad F. Taha Module 07 — Controllability and Controller Design of Dynamical LTI Systems 28 / 34



Intro to Controllability DT Systems Controllability Controllability Tests Design of Controllers, Stabilizability

Remarks about Stabilizability

Uncontrollable Modes
If λ is an uncontrollable eigenvalue of (A,B), then λ will also be an
eigenvalue of A + BK for any gain matrix K.

Stabilizability Theorem (2)
A pair (A,B) is stabilizable if and only if rank([λI − A B]) = n for every
eigenvalue λ of A with nonnegative real part.
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Pole Placement Problem for CT LTI Systems
Suppose that A has some positive eigenvalues problem
Objective: find a control u(t) = −Kx(t), i.e., find K such that
matrix A− BK has only strictly -ve evalues in predefined locations

Pole Placement Theorem
Assuming that the pair (A,B) is controllable (C is full rank), then there
exists a feedback matrix K such that the closed-loop system eigenvalues
(evalues of A− BK ) can be placed in arbitrary locations.

u(t) = −Kx(t)+v(t)⇒ ẋ(t) = (A−BK )x(t)+v(t), v(t) = reference signal
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Controllable Canonical Form

Recall the controllable canonical form for a single input system:

x(t) =


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)
ẋn(t)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1




x1(t)
x2(t)

...
xn−1(t)
xn(t)


︸ ︷︷ ︸

Ax(t)

+


0
0
...
0
1

 u(t)

︸ ︷︷ ︸
Bu(t)

No matter what the values of ai ’s are, the above system is ALWAYS
controllable
How can you prove this? Derive the controllability matrix—you’ll see
that it’s always full rank!
Does that mean all systems are controllable? No it doesn’t!
We can only reach the controllable canonical form if there exists a
transformation that would transform a controllable system into the
controllable canonical form
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CCF — 2

CCF Transformation Theorem
If ẋ(t) = Ax(t) + Bu(t) has only one input (m = 1) and is controllable,
there exists a state-coordinate change, defined as z(t) = Tx(t), such that

z(t) = (TAT−1)z(t) + TBu(t)

is in controllable canonical form.

Eigenvalues of LTI systems do not change after applying linear
transformation
For systems that are initially uncontrollable, no transformation exists
that would put the system in its controllable canonical form
Transformations for LTI systems preserve properties (stabilizability,
controllability)
Transformations only shape the state-space dynamics in a nice,
compact form
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Important Notes

In this module, we studied controllability, stabilizability, pole
placement problems, and the design of state feedback controller to
stabilize a potentially nonlinear system
These results give theoretical guarantees to stabilize linear systems
What happens if you apply a state feedback controller on a nonlinear
system?
This might stabilize the nonlinear system, and it might not
You should try that in your project
Discussion on that...
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/ataha
IFF you want to know more ,
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