Module 05 Discrete Time Systems

Ahmad F. Taha

EE 5143: Linear Systems and Control

Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/ataha

October 3, 2017

From CT to DT Systems

- In the previous module, we discussed the basic idea of discretization
- Basically, how to obtain state-space matrices for discretized representation of CT systems
- This necessitates understanding the calculus of DT systems, starting from the difference equation

$$
x(k+1)=A x(k)+B u(k), \quad y(k)=C x(k)+D u(k)
$$

- Note: A, B, C, D here are assumed to be discretized one (derived from one the discretization methods in the previous module). In other words, they're $\tilde{A}, \tilde{B}, \ldots$
- In many situations, we arrive at a DT system after discretization
- However, in many other situations, DT systems (difference equations) depict the actual physics

DT Systems: An Example

- The problem of compound interest/loan payment is a DT control system
- Suppose you owe $\$ 1000$ to a bank at $t=k=0$, and your monthly interest rate is 1.5%
- Also, suppose that the minimum payment is $\$ 50$ and you never pay more than the minimum payment
- Hence, we can write:

$$
x(k+1)=1.015 x(k)+u(k), \quad x(0)=1000
$$

- $x(k)$ represents the amount of money you still owe; $u(k)=-50$ is the constant monthly payment
- Question 1: Compute your remaining debt after 10 payments
- Question 2: How long it will take to pay it all off?

Solution

$x(k+1)=\lambda x(k)+\beta u(k), \quad x(0)=x_{0}=1000, \quad \lambda=1.015, \beta=1$ are given
(1) $x(1)=\lambda x(0)+\beta u(0), \quad x(2)=\lambda^{2} x(0)+\lambda \beta u(0)+\beta u(1)$

$$
x(3)=\lambda^{3} x(0)+\lambda^{2} \beta u(0)+\lambda \beta u(1)+\beta u(2)
$$

(2) Hence, one can write: $x(k)=\lambda^{k} x(0)+\sum_{j=0}^{k-1} \lambda^{j} \beta u(k-1-j)$
(3) For this particular problem, $u(k)=u(j)=-50=\gamma$, therefore:

$$
x(k)=\lambda^{k} x(0)+\beta \gamma \sum_{j=0}^{k-1} \lambda^{j}=\lambda^{k} x(0)+\beta \gamma\left(\frac{1-\lambda^{k}}{1-\lambda}\right), \forall k
$$

(9) Question 1 Solution:

$$
x(10)=(1.015)^{10} \cdot 1000+(-50 \cdot 1)\left(\frac{1-1.015^{10}}{1-1.015}\right)=\$ 625.40
$$

(0) Question 2 Solution: find k such that $x(k)=0$

$$
0=(1.015)^{k} 1000-50\left(\frac{1-1.015^{k}}{1-1.015}\right) \Rightarrow k \approx 23.96=24 \text { payments }
$$

DT Systems: Why do we need it?

- As we saw in the previous example, we were able to compute two important quantities via the accurate model of loan payments
- We computed how many monthly payments is needed to pay off the debt
- We can also easily obtain how much is left at any $k<24$
- This case that we discussed is for the scalar case, i.e.,

$$
x(k+1)=\lambda x(k)+\beta u(k)
$$

- What if we have n-dimensional state-space, i.e.,

$$
x(k+1)=A x(k)+B u(k)
$$

- How can we find $x(k)$ at any k ? How can we find k that would yield $x(k)=0$-vector?
- To do that, we need to have theory that supports DT system, in contrast with CT LTI systems and matrix exponentials

State Space of DT LTI Systems

$$
x(k+1)=A x(k)+B u(k), \quad y(k)=C x(k)+D u(k)
$$

- To find $x(k)$, we need to find A^{k} (analogous to matrix exponentials for the CT case)
- Let's consider that $u(k)=0$, then it's easy to see that:

$$
x(1)=A x(0), \quad x(2)=A x(1)=A^{2} x(0), \quad \Rightarrow x(k)=A^{k} x(0) \Rightarrow y(k)=C A^{k} x(0)
$$

- How to find A^{k} ? Can you simply raise the entries of A to the k-th power?
- No! You cannot! To find A^{k}, diagonalize $A=T D T^{-1}$
- Then ${ }^{1}$, we can write $A^{k}=T D^{k} T^{-1}$
- If the matrix is not diagonalizable, find the Jordan form, $\left(A^{k}=T J^{k} T^{-1}\right)$
- In that case, $J^{k}=\left[\begin{array}{cc}\lambda^{k} & k \lambda^{k-1} \\ 0 & \lambda^{k}\end{array}\right]$ for a Jordan block of λ with size 2

[^0]
State Space of DT LTI Systems

- So, what if we have a nonzero control $u(k)$?
- We need to obtain an explicit solution $x(k)$ given $x(0)$ and $u(k)$
- We can prove that for

$$
x(k+1)=A x(k)+B u(k)
$$

the state solution is:

$$
x(k)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{k-1-j} B u(j)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{j} B u(k-1-j) \quad(*)
$$

- This is very similar to $x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$ which we derived before
- Equation (*) can be proved via induction, or even by intuition

Solutions of DT LTI Systems

$$
x(k)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{k-1-j} B u(j)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{j} B u(k-1-j) \quad(*)
$$

- The above equation entails: (a) finding closed form solution to A^{k} and (b) being clever with summations (instead of integrals)
- Again, as mentioned earlier, to find A^{k} : either find the diagonal or Jordan canonical forms
- The complexity remains if the summation is difficult to analytically compute
- Let's do two examples to demonstrate that
- Notice that there's two ways to compute $x(k)$-look at ($*$)
- This means that you should pick the equation which is easy to analytically evaluate

DT LTI Systems - Example 2

$$
x(k)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{k-1-j} B u(j)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{j} B u(k-1-j) \quad(*)
$$

- Consider this system:

$$
\begin{gathered}
x(k+1)=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(k) \\
u(k)=\lambda_{1}^{k}, \quad x(0)=0, \quad \lambda_{1,2} \neq 1,0, \quad \lambda_{1} \neq \lambda_{2}
\end{gathered}
$$

- Important summation rule $1: \sum_{j=0}^{k-1} \alpha^{j}=\frac{1-\alpha^{k}}{1-\alpha}$ assuming that $\alpha \neq 1$
- Find $x(k)$. Solution:

$$
x(k)=\left[\begin{array}{c}
k \lambda_{1}^{k-1} \\
\lambda_{2}^{k-1} \frac{1-\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{k}}{1-\frac{\lambda_{1}}{\lambda_{2}}}
\end{array}\right]
$$

DT LTI Systems - Example 3

- Consider this system:

$$
\begin{gathered}
x(k+1)=\left[\begin{array}{cc}
1 & -0.5 \\
0.5 & 0
\end{array}\right] x(k)+\left[\begin{array}{c}
2 \\
-2
\end{array}\right] u(k) \\
u(k)=1, \quad x(0)=\left[\begin{array}{c}
2 \\
-2
\end{array}\right], \quad \lambda_{1,2} \neq 1,0, \quad \lambda_{1} \neq \lambda_{2}
\end{gathered}
$$

- Important summation rule 2:

$$
\sum_{j=0}^{k-1} j \alpha^{j-1}=\frac{d}{d \alpha} \sum_{j=0}^{k-1} \alpha^{j}=\frac{d}{d \alpha}\left[\frac{1-\alpha^{k}}{1-\alpha}\right]=\frac{1-k \alpha^{k-1}+(k-1) \alpha^{k}}{(1-\alpha)^{2}}
$$

- Find $x(k)$

Solution to Example 3

$$
\begin{equation*}
x(k)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{k-1-j} B u(j)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{j} B u(k-1-j) \tag{*}
\end{equation*}
$$

(1) First, we can write A as:

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0.5 & 1 \\
0 & 0.5
\end{array}\right]\left[\begin{array}{cc}
0.5 & 0.5 \\
0.5 & -0.5
\end{array}\right]=T J T^{-1}
$$

(2) Find $A^{k}=T J^{k} T^{-1}$, with $J^{k}=\left[\begin{array}{cc}0.5^{k} & k 0.5^{k-1} \\ 0 & 0.5^{k}\end{array}\right]$, then:

$$
x(k)=T J^{k} T^{-1} \times(0)+T \sum_{j=0}^{k-1} J^{j} T^{-1} B u(k-1-j)
$$

(3) $T^{-1} B u(k-1-j)=T^{-1} B=v=\left[\begin{array}{ll}0 & 2\end{array}\right]^{\top}$ constant, hence:

$$
x(k)=T J^{k} T^{-1} x(0)+T\left(\sum^{k-1} J^{j}\right) v
$$

Solution to Example 3-2

$$
x(k)=T J^{k} T^{-1} x(0)+T\left(\sum_{j=0}^{k-1} J^{j}\right) v
$$

- The only difficult term to evaluate in the above equation is the summation
- Everything else is given
- Recall that

$$
J^{k}=\left[\begin{array}{cc}
0.5^{k} & k 0.5^{k-1} \\
0 & 0.5^{k}
\end{array}\right] \Rightarrow \sum_{j=0}^{k-1} J^{j}=\sum_{j=0}^{k-1}\left[\begin{array}{cc}
0.5^{j} & j 0.5^{j-1} \\
0 & 0.5^{j}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{j=0}^{k-1} 0.5^{j} & \sum_{j=0}^{k-1} j 0.5^{j-1} \\
0 & \sum_{j=0}^{k-1} 0.5^{j}
\end{array}\right]
$$

- This matrix has three summations, that can be immediately evaluated via summation rules 1 and 2 , then:

$$
x(k)=T J^{k} T^{-1} x(0)+T\left[\begin{array}{cc}
\frac{1-0.5^{k}}{1-0.5} & \frac{1-k 0.5^{k-1}+(k-1) 0.5^{k}}{(1-0.5)^{2}} \\
0 & \frac{1-0.5^{k}}{1-0.5}
\end{array}\right] v
$$

Final Solution to Example 3

$$
\begin{gathered}
x(k)=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0.5^{k} & k 0.5^{k-1} \\
0 & 0.5^{k}
\end{array}\right]\left[\begin{array}{cc}
0.5 & 0.5 \\
0.5 & -0.5
\end{array}\right]\left[\begin{array}{c}
2 \\
-2
\end{array}\right] \\
+\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\frac{1-0.5^{k}}{1-0.5} & \frac{1-k 0.5^{k-1}+(k-1) 0.5^{k}}{(1-0.5)^{2}} \\
0 & \frac{1-0.5^{k}}{1-0.5}
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left(\left[\begin{array}{cc}
0.5^{k} & k 0.5^{k-1} \\
0 & 0.5^{k}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1-0.5^{k}}{1-0.5} & \frac{1-k 0.5^{k-1}+(k-1) 0.5^{k}}{0} \\
0 & (1-0.5)^{2} \\
\frac{1-0.5^{k}}{1-0.5}
\end{array}\right]\right)\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
2-0.5^{k} & 4-3 k 0.5^{k-1}+4(k-1) 0.5^{k} \\
0 & 2-0.5^{k}
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
8-6 k 0.5^{k-1}+8(k-1) 0.5^{k} \\
4-2 \cdot 0.5^{k}
\end{array}\right] \\
=\left[\begin{array}{c}
12-6 k 0.5^{k-1}+(8 k-10) 0.5^{k} \\
4-6 k 0.5^{k-1}+(8 k-6) 0.5^{k}
\end{array}\right]=\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]
\end{gathered}
$$

Remarks

- What we've done so far is analyze state solutions (and you can easily obtain output solutions) for DT systems
- DT systems emerge naturally from systems where time is discrete
- DT systems also emerge from discretization of CT systems
- If a discretization is computed, and it's very accurate, then $x(k) \approx x(t)$ between two sampling instances

Intro to TV DT Linear Systems

- Previously, we assumed that the system is time invariant

$$
\begin{gathered}
x(k+1)=A x(k)+B u(k) \\
x(k)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{k-1-j} B u(j)=A^{k} x(0)+\sum_{j=0}^{k-1} A^{j} B u(k-1-j) \quad(*)
\end{gathered}
$$

- A, B, C, D were all constant matrices for the LTI DT systems
- What if we have the following:

$$
x(k+1)=A(k) x(k)+B(k) u(k)
$$

- What will the state solution be?
- To do that, let's get some help from the STM for DT systems

STM of DT Systems with no Inputs

STM of DT Autonomous Systems

The STM for DT systems $x(k+1)=A(k) x(k)$ is defined as $\phi(n, k)$ such that for any $x(k)$, we have

$$
x(n)=\phi(n, k) x(k)
$$

- So what is $\phi(n, k)$ in this case? We can easily derive it:

$$
x(k+1)=A(k) x(k) ; \quad x(k+2)=A(k+1) x(k+1)=A(k+1) A(k) x(k), \ldots
$$

- Hence:

$$
x(n)=A(n-1) A(n-2) \cdots A(k+1) A(k) x(k)=\left(\prod_{j=k}^{n-1} A(j)\right) x(k)
$$

STM of DT Autonomous Systems-2

For the above system, the STM is $\phi(n, k)=\prod_{j=k}^{n-1} A(j)$

Properties of STM of DT Systems

$$
\begin{gathered}
x(k)=\phi(k, 0) x(0)+\sum_{j=0}^{k-1} \phi(k, j+1) B(j) u(j) \\
\phi(n, k)=\prod_{j=k}^{n-1} A(j)=A(n-1) A(n-2) \cdots A(k+1) A(k)
\end{gathered}
$$

(1) For DT LTI systems, $\phi(n, k)=A^{n-k}$
(2) For DT LTI systems, if $k=0$ (i.e., zero ICs), $\phi(n)=A^{n}$
(0) The STM $\phi(n, k)$ can be singular. If $A(k), \forall k$ is nonsingular, then $\phi(n, k)$ is nonsingular
(1) $\phi(n, n)=I, \forall n$
(0) $\phi\left(k_{3}, k_{2}\right) \phi\left(k_{2}, k_{1}\right)=\phi\left(k_{3}, k_{1}\right), \quad \forall k_{3} \geq k_{2} \geq k_{1}$
(0) STM satisfy the difference equation:

$$
\phi(k+1, j)=A(k) \phi(k, j)
$$

TV DT Systems

State Solution of TVDT Systems

The state solution for time-varying DT systems

$$
x(k+1)=A(k) x(k)+B(k) u(k)
$$

is defined as

$$
x(k)=\phi(k, 0) x(0)+\sum_{j=0}^{k-1} \phi(k, j+1) B(j) u(j)
$$

where $\phi(n, k)=\prod_{j=k}^{n-1} A(j)$.

- Can you prove the above theorem? You can do that by induction
- First, show that the formula is true for $k=0$. Then, assume it's true for k, and prove it for $k+1$
- You should use the fact that DT systems satisfy the difference equation: $\phi(k+1, j)=A(k) \phi(k, j)$

Example 4

- Consider this dynamical system

$$
x(k+1)=A x(k)+B u(k), \quad y(k)=C(k) x(k)+D u(k)
$$

- For this system, only the $C(k)$ matrix is time-varying
- Question: Given that you have three sets of input-output data:

$$
(y(k), u(k)),(y(k+1), u(k+1)),(y(k+2), u(k+2))
$$

and $x(k)$ is unknown, derive an equation that would allow you to obtain $x(k)$

- Solution:

$$
\left[\begin{array}{c}
y(k) \\
y(k+1) \\
y(k+2)
\end{array}\right]=\left[\begin{array}{c}
C(k) \\
C(k+1) A \\
C(k+2) A^{2}
\end{array}\right] x(k)+\left[\begin{array}{ccc}
D & 0 & 0 \\
C(k+1) B & D & 0 \\
C(k+2) A B & C(k+2) B & D
\end{array}\right]\left[\begin{array}{c}
u(k) \\
u(k+1) \\
u(k+2)
\end{array}\right]
$$

Example 4 (Cont'd)

$$
\left[\begin{array}{c}
y(k) \\
y(k+1) \\
y(k+2)
\end{array}\right]=\left[\begin{array}{c}
C(k) \\
C(k+1) A \\
C(k+2) A^{2}
\end{array}\right] x(k)+\left[\begin{array}{ccc}
D & 0 & 0 \\
C(k+1) B & D & 0 \\
C(k+2) A B & C(k+2) B & D
\end{array}\right]\left[\begin{array}{c}
u(k) \\
u(k+1) \\
u(k+2)
\end{array}\right]
$$

- Given the above equation, and since the input-output data is given, we can write the following:

$$
Y=\bar{A} x(k)+\bar{B} U \Rightarrow(Y-\bar{B} U)=\bar{A} x(k)
$$

- The LHS of the boxed equation is constant, and the only unknown in this equation is $x(k)$
- How to find $x(k)$?
- This is similar to solving a linear systems of equations: $A x=b$
- When is this linear system solved for a unique $x(k)$?
- Answer: if \bar{A} is full row rank, then $x(k)$ can be obtained

Solution to Rectangular $A x=b$

$$
(Y-\bar{B} U)=\bar{A} x(k) \quad \equiv \quad b=A x
$$

- Matrix \bar{A} is a tall-skinny, rectangular matrix
- This equation is similar to solving $A x=b$ for rectangular $A \in \mathbb{R}^{m \times n}, m>n$
- How to solve this equation? When is there a solution?
- $A x=b$ has a consistent solution when $\operatorname{rank}[A, b]=\operatorname{rank}(A)$
- Or whenever $b \in$ column-space (A)
- The solution is unique if and only if $\operatorname{rank}(A)=n$, i.e., A has full column rank
- The unique solution is given by: $x=A^{-L} b$, where A^{-L} is called the left inverse of A
- A left inverse of A is one that satisfies $A^{-L} A=I$
- Moore-Penrose pseudo left inverse is equal to: $A^{-L}=\left(A^{\top} A\right)^{-1} A^{\top}$ (Matlab's pinv command computes that)
- How did we obtain this?

What if A is not full column rank

$$
(Y-\bar{B} U)=\bar{A} x(k) \quad \equiv \quad b=A x
$$

- This method can be also generalized for fat matrices with more columns than rows (the left inverse then becomes a right inverse)
- So, after obtaining $x=A^{-L} b=\left(A^{\top} A\right)^{-1} A^{\top} b$, we get the initial conditions or the needed $x(k)$ given the input-output measurements
- What if the A-matrix (\bar{A}) is not full column rank and there's no solution to $A x=b$?
- Well, we'll have to settle for a least-squares solution
- A least squares solution is a one that minimizes the error $b-A x$
- It solve this problem:

$$
\underset{x}{\operatorname{minimize}}\|b-A x\|_{2},
$$

i.e., find x that minimize the error-a simple optimization problem

Example

- Solve $A x=b$ for $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right], b=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right], x \in \mathbb{R}^{2}$
- Clearly, A is not full column rank
- Solve on Matlab: $x=p i n v A * b=\left[\begin{array}{c}0.75 \\ 0\end{array}\right]$-this is a least squares solution, a solution that minimizes the error $b-A x$
- Now, let's set $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right], b=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right]$-full rank A
- $\mathrm{x}=\mathrm{pinvA} \mathrm{b}=\left(A^{\top} A\right)^{-1} A^{\top} b=\left[\begin{array}{c}0.99 \\ -1.99\end{array}\right]$
- pinv and the left-inverse yielded the same solution as the equations are consistent and A is full column rank

Linearization of Nonlinear Systems - Unrelated Topic

- We learned previously how to compute equilibrium points for nonlinear system
- Precisely, if $\dot{x}(t)=f(x, u)$, we learned how to obtain the equilibrium solution to this system x_{e}, u_{e} such that $f\left(x_{e}, u_{e}\right)=0$
- From this equilibrium point, how do we obtain a linearized state space?
- First, recall that The equation for the linearization of a function $f(x, y)$ at a point $\left(x_{e}, u_{e}\right)$ is:

$$
f(x, u) \approx f\left(x_{e}, u_{e}\right)+\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{e}, u_{e}}\left(x-x_{e}\right)+\left.\frac{\partial f(x, u)}{\partial y}\right|_{x_{e}, u_{e}}\left(u-u_{e}\right)
$$

- Now, define

$$
\tilde{x}=x-x_{e}, \tilde{u}=u-\left.u_{e} \quad \frac{\partial f(x, u)}{\partial x}\right|_{x_{e}, u_{e}}=A,\left.\quad \frac{\partial f(x, u)}{\partial y}\right|_{x_{e}, u_{e}}=B
$$

- Then: $\dot{\tilde{x}}(t)=f(x, u)-f\left(x_{e}, u_{e}\right) \approx A \tilde{x}(t)+B \tilde{u}(t)$

Few Notes on Linearization

- $f(x, u)$ is not scalar-it's a vector of potentially nonlinear functions to be linearized
- $\left(x_{e}, u_{e}\right)$ are constant and precomputed
- $A=\left.\frac{\partial f(x, u)}{\partial x}\right|_{x_{e}, u_{e}}$: is the Jacobian matrix of partial derivatives of the function $f(x, u)$ w.r.t. x. This Jacobian matrix is then evaluated at x_{e}, u_{e} (i.e., it's a constant matrix)
- $B=\left.\frac{\partial f(x, u)}{\partial u}\right|_{x_{e}, u_{e}}$: is the Jacobian matrix of partial derivatives of the function $f(x, u)$ w.r.t. u, evaluated at $\left(x_{e}, u_{e}\right)$
- Similar linearization procedure for output equation $y(t)=h(x, u)$
- Stability of the linearized system depends on the choice of the equilibrium points (there are stable equilibrium points and unstable ones)

Linearization Example 1

- A model for cubic leaf spring is given as follows:

$$
m \ddot{z}(t)=-k_{1} z(t)-k_{2} z^{3}(t)
$$

- Question 1: Assume $m=1$, find the state-space representation of this nonlinear system
- Solution: $\dot{x}(t)=f(x)=\left[\begin{array}{c}x_{2}(t) \\ -k_{1} x_{1}(t)-k_{2} x_{1}^{3}(t)\end{array}\right]$
- Question 2: Find the equilibrium of this nonlinear system
- Solution: Two points: $x_{e}^{(1)}=[0,0], x_{e}^{(2)}=\left[\pm \sqrt{\frac{-k_{1}}{k_{2}}}, 0\right]$
- Question 3: Linearize the system around the equilibrium points
- Solution:

$$
\dot{\tilde{x}}(t)=\left[\begin{array}{cc}
0 & 1 \\
-k_{1}-3 k_{2} x_{e 1}^{2} & 0
\end{array}\right] \tilde{x}(t)
$$

For $x_{e}^{(1)}: A^{(1)}=\left[\begin{array}{cc}0 & 1 \\ -k_{1} & 0\end{array}\right]$. For $x_{e}^{(2)}: A^{(2)}=\left[\begin{array}{cc}0 & 1 \\ 2 k_{1} & 0\end{array}\right]$

- Question 4: Determine the stability of the linearized system for different values of k_{1}, k_{2}

Linearization Example 2

- A pendulum model with friction is given as follows:

$$
\dot{x}_{1}(t)=x_{2}(t), \quad \dot{x}_{2}(t)=-10 \sin \left(x_{1}(t)\right)-x_{2}(t)+u(t)
$$

- Question 1: Find the state-space representation of this nonlinear system
- Solution:

$$
\dot{x}(t)=f(x, u)=\left[\begin{array}{c}
x_{2}(t) \\
-10 \sin \left(x_{1}(t)\right)-x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

- Question 2: Find the equilibrium of this nonlinear system given that $u_{e}=0$
- Solution:
- Question 3: Linearize the system around the equilibrium points
- Solution:
- Question 4: Determine the stability of the linearized system

Linearization Example 3

- Another Example:

$$
\dot{x}(t)=\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-2\left(1+x_{1}\right) x_{2}-4 x_{1}^{3}+2 u
\end{array}\right]
$$

Linearization of DT Nonlinear systems

- We studied linearization of nonlinear CT dynamic systems
- What about the linearization of nonlinear discrete time systems?

$$
x(k+1)=f(x, u)
$$

- How do we linearize? Exactly the same procedure as before
- Example:

$$
x(k+1)=\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{c}
a x_{1}(k)+b x_{1}(k) x_{2}(k)+c x_{1}(k) u_{1}(k) \\
d x_{2}(k)
\end{array}\right]
$$

- Solution:

Questions And Suggestions?

Please visit engineering.utsa.edu/ataha
IFF you want to know more ${ }^{-}$

[^0]: ${ }^{1}$ We proved that in one of the homeworks.

