Module 03

Linear Algebra Review \& Solutions to State Space

Ahmad F. Taha

EE 5143: Linear Systems and Control

Email: ahmad.taha@utsa.edu
Webpage: http://engineering.utsa.edu/~taha

September 7, 2017

Vector Space (aka Linear Space)

A (real) vector space V is a set with two operations:

- Vector sum $+: V+V \rightarrow V$
- Scalar multiplication • : $\mathbb{R} \times V \rightarrow V$
that has the following properties
(1) Commutative: $x+y=y+x, \forall x, y \in V$
(2) Associative: $(x+y)+z=x+(y+z), \forall x, y, z \in V$
(3) Zero element: $\exists!0 \in V$ such that $0+x=x, \forall x \in V$
(4) Inverse: $\forall x \in V, \exists(-x) \in V$ such that $x+(-x)=0$
$5(\alpha \beta) x=\alpha(\beta x), \forall \alpha, \beta \in \mathbb{R}, x \in V$
(6) $\alpha(x+y)=\alpha x+\alpha y, \forall a \in \mathbb{R}, x, y \in V$
(7) $(\alpha+\beta) x=\alpha x+\beta x, \forall \alpha, \beta \in \mathbb{R}, x \in V$

Examples of Vector Space

(1) \mathbb{R}^{n} with vector sum and scalar multiplication
(2) $\mathbb{R}^{m \times n}$: the set of all m-by- n matrices
(3) P_{n} : the set of all real polynomials in s with degree up to n :

$$
\mathcal{P}_{n}:=\left\{a_{n} s^{n}+\cdots+a_{1} s+a_{0} \mid a_{0}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

(4) Give an index set \mathcal{I}, the set of all mappings from \mathcal{I} to \mathbb{R}^{n} :

$$
\mathcal{F}\left(\mathcal{I} ; \mathbb{R}^{n}\right):=\left\{f: \mathcal{I} \rightarrow \mathbb{R}^{n}\right\}
$$

(5) $\left\{f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{n} \mid f\right.$ is differentiable $\}$
(6) The set of all functions $f(t), t \geq 0$, with a Laplace transform
(7) The set of all square integrable functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$
(8) The set of all solutions $x(t) \in \mathbb{R}^{n}, t \geq 0$, to autonomous LTI system

$$
\dot{x}=A x, \quad x(0)=x_{0}
$$

Supspaces and Product Spaces

Definition (Subspace)

W is a subspace of vector space V if $W \subset V$ and W itself is a vector space under the same vector sum and scalar multiplication operations

Example:

- $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}:=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}: \alpha_{i} \in \mathbb{R}\right\} \subset V$
- Diagonal and symmetric matrices
- $\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \subset \cdots \subset \mathcal{P}_{\infty}$

Definition (Product space)

Given two vector spaces V_{1} and V_{2}, their direct product is the vector space $V_{1} \times V_{2}:=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$

Example:

- $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$
- $\mathcal{F}\left(\mathcal{I} ; \mathbb{R}^{2}\right)=\mathcal{F}(\mathcal{I} ; \mathbb{R}) \times \mathcal{F}(\mathcal{I} ; \mathbb{R})$

Bases and Dimension of Vector Spaces

v_{1}, \ldots, v_{k} in vector space V are linearly independent if for $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$,

$$
\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=0 \Rightarrow \alpha_{1}=\cdots=\alpha_{k}=0
$$

A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of the vector space V if

- v_{1}, \ldots, v_{k} are linear independent in V
- $V=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$

Or equivalently,

- each $v \in V$ has a unique expression $v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$
- $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is the coordinate of v in this basis

Definition (Dimension)

The dimension of a vector space V is the number of vectors in any of its basis, and is denoted $\operatorname{dim} V$.

Examples of finite and infinite dimensional vector spaces:

Linear Maps

A map $f: V \rightarrow W$ between two vector spaces V and W is linear if

$$
f\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} f\left(v_{1}\right)+\alpha_{2} f\left(v_{2}\right)
$$

Example:

- $x \in \mathbb{R}^{n} \mapsto A x \in \mathbb{R}^{m}$ for some matrix $A \in \mathbb{R}^{m \times n}$
- Projection $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mapsto x_{i} \in \mathbb{R}$
- $X \in \mathbb{R}^{m \times n} \mapsto X^{T} \in \mathbb{R}^{n \times m}$
- $X \in \mathbb{R}^{n \times n} \mapsto A_{1} X+X A_{2} \in \mathbb{R}^{n \times n}$ for constant $A_{1}, A_{2} \in \mathbb{R}^{n \times n}$
- A continuous function on $[0,1] \mapsto \int_{0}^{t} f(x) d x \in \mathbb{R}$
- Polynomial $p(s) \in \mathcal{P}_{n} \mapsto p^{\prime}(s) \in \mathcal{P}_{n-1}$
- Solutions (zero-state, zero-input responses) of an LTI system

A linear map $f: V \rightarrow W$ must map $0 \in V$ to $0 \in W$
The composition of two linear maps $f: V \rightarrow W$ and $g: W \rightarrow U$ is also linear: $g \circ f: v \in V \mapsto g(f(v)) \in U$

One-To-One Mapping

Matrix $A \in \mathbb{R}^{m \times n}$ considered as a linear map \mathbb{R}^{n} to \mathbb{R}^{m} has null space $\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$

- Set of all vectors orthogonal to all rows of A
- Characterize ambiguity in solving equation $A x=y$
$A \in \mathbb{R}^{m \times n}$ is one-to-one if and only if
- Columns of A are linearly independent
- Rows of A span \mathbb{R}^{n}
- A has rank n (full column rank)
- A has a left inverse: $\exists B \in \mathbb{R}^{n \times m}$ such that $B A=I_{n}$

Matrix Rank

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is its maximum number of linearly independent columns (or rows), or equivalently, $\operatorname{dim} \mathcal{R}(A)$

- $\operatorname{Rank}(A) \leq \min (m, n)$
- $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{T}\right)$
- $\operatorname{Rank}(A)+\operatorname{dim} \mathcal{N}(A)=n$ (conservation of dimension)

Matrix $A \in \mathbb{R}^{m \times n}$ is full rank if $\operatorname{Rank}(A)=\min (m, n)$, which means

- (for skinny matrices) independent column or injective maps
- (for fat matrices) independent rows or surjective maps
- (for square matrices) nonsingular or bijective maps

Matrix Transpose

When $A \in \mathbb{R}^{m \times n}$ is considered as a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}, its transpose $A^{T} \in \mathbb{R}^{n \times m}$ is a linear map from \mathbb{R}^{m} back to \mathbb{R}^{n}

The following are equivalent
(1) A is one-to-one
(2) A^{T} is onto
(3) $\operatorname{det} A^{T} A \neq 0$
(4) $A^{T} A \in \mathbb{R}^{n \times n}$ is bijective

More generally, for any $A \in \mathbb{R}^{m \times n}$

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$
- $\mathcal{N}\left(A^{T}\right)=\mathcal{R}(A)^{\perp}$

The following are equivalent
(1) A is onto
(2) A^{T} is one-to-one
(3) $\operatorname{det} A A^{T} \neq 0$
(4) $A A^{T} \in \mathbb{R}^{m \times m}$ is bijective

Inner Products

For $x, y \in \mathbb{R}^{n}$, their inner product is

$$
\langle x, y\rangle:=x^{T} y=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

For $x, y, z \in \mathbb{R}^{n}$

- $\langle x, y\rangle=\langle y, x\rangle$
- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle x, y\rangle$
- $\langle x, x\rangle=\|x\|^{2} \geq 0$, where $\|x\|$ is the Euclidean norm of x :

$$
\|x\|:=\sqrt{x^{T} x}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

Theorem (Cauchy-Schwartz Inequality)

$$
|\langle x, y\rangle| \leq\|x\| \cdot\|y\|, \quad \forall x, y \in \mathbb{R}^{n}
$$

Eigenvalues and Eigenvectors

Eigenvalues/Eigenvectors of a matrix

- Evalues/vectors are only defined for square ${ }^{1}$ matrices
- For a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we always have n evalues/evectors
- Some of these evalues might be distinct, real, repeated, imaginary
- To find evalues (\boldsymbol{A}), solve this equation (\boldsymbol{I}_{n} : identity matrix of size n)

$$
\operatorname{det}\left(\lambda \boldsymbol{I}_{n}-A\right)=0 \text { or } \operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{n}\right)=0 \Rightarrow a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}=0
$$

- Example: $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$.
- Eigenvectors: A number λ and a non-zero vector \boldsymbol{v} satisfying

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v} \Rightarrow\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{n}\right) \boldsymbol{v}=0
$$

are called an eigenvalue and an eigenvector of \boldsymbol{A}
$-\lambda$ is an eigenvalue of an $n \times n$-matrix \boldsymbol{A} if and only if $\lambda \boldsymbol{I}_{n}-\boldsymbol{A}$ is not invertible, which is equivalent to

$$
\operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{\mathrm{n}}\right)=0 .
$$

${ }^{1}$ A square matrix has equal number of rows and columns.

Matrix Inverse

- Inverse of a generic 2 by 2 matrix:

$$
\mathbf{A}^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

- Notice that $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{A A}^{-1}=I_{2}$
- Inverse of a generic 3by3 matrix:

$$
\left.\begin{array}{c}
\mathbf{A}^{-1}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & I
\end{array}\right]^{T}=\frac{1}{\operatorname{det}(\mathbf{A})}\left[\begin{array}{ccc}
A & D & G \\
B & E & H \\
C & F & I
\end{array}\right] \\
A=(e i-f h) \\
B=-(b i-c h)
\end{array}\right]=(b f-c e) .
$$

- Notice that $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{A A}^{-1}=I_{3}$

Linear Algebra - Example 1

- Find the eigenvalues, eigenvectors, and inverse of matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right]
$$

- Eigenvalues: $\lambda_{1,2}=5,-2$
- Eigenvectors: $\boldsymbol{v}_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}, \boldsymbol{v}_{2}=\left[\begin{array}{ll}-\frac{4}{3} & 1\end{array}\right]^{\top}$
- Inverse: $\boldsymbol{A}^{-1}=-\frac{1}{10}\left[\begin{array}{cc}2 & -4 \\ -3 & 1\end{array}\right]$
- Write \boldsymbol{A} in the matrix diagonal transformation, i.e., $\boldsymbol{A}=\boldsymbol{T} \boldsymbol{D} \boldsymbol{T}^{-1}$ where \boldsymbol{D} is the diagonal matrix containing the eigenvalues of \boldsymbol{A} :

$$
\boldsymbol{A}=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]^{-1}
$$

- Only valid for matrices with distinct, real eigenvalues

Rank of a Matrix

- Rank of a matrix: $\operatorname{rank}(\boldsymbol{A})$ is equal to the number of linearly independent rows or columns
- Example 1: $\operatorname{rank}\left(\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ -1 & -1 & 0 & -2\end{array}\right]\right)=$?
- Example 2: $\operatorname{rank}\left(\left[\begin{array}{ccc}1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0\end{array}\right]\right)=$?
- Rank computation: reduce the matrix to a simpler form, generally row echelon form, by elementary row operations
- Example 2 Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
3 & 5 & 0
\end{array}\right] \rightarrow 2 r_{1}+r_{2}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
3 & 5 & 0
\end{array}\right] \rightarrow-3 r_{1}+r_{3}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -1 & -3
\end{array}\right]} \\
& \rightarrow r_{2}+r_{3}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \rightarrow-2 r_{2}+r_{1}\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \operatorname{rank}(\boldsymbol{A})=2
\end{aligned}
$$

- For a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}: \operatorname{rank}(\boldsymbol{A}) \leq \min (m, n)$

Null Space of a Matrix

- The Null Space of any matrix \boldsymbol{A} is the subspace \mathcal{K} defined as follows:

$$
\mathrm{N}(\boldsymbol{A})=\operatorname{Null}(\boldsymbol{A})=\operatorname{ker}(\boldsymbol{A})=\{\boldsymbol{x} \in \mathcal{K} \mid \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}
$$

- $\operatorname{Null}(\boldsymbol{A})$ has the following three properties:
- $\operatorname{Null}(\boldsymbol{A})$ always contains the zero vector, since $\boldsymbol{A 0}=\mathbf{0}$
- If $\boldsymbol{x} \in \operatorname{Null}(\boldsymbol{A})$ and $\boldsymbol{y} \in \operatorname{Null}(\boldsymbol{A})$, then $\boldsymbol{x}+\boldsymbol{y} \in \operatorname{Null}(\boldsymbol{A})$
- If $\boldsymbol{x} \in \operatorname{Null}(\boldsymbol{A})$ and c is a scalar, then $c \boldsymbol{x} \in \operatorname{Null}(\boldsymbol{A})$
- Example: Find $N(\boldsymbol{A})$

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 3 & 5 \\
-4 & 2 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
2 & 3 & 5 \\
-4 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
2 & 3 & 5 & 0 \\
-4 & 2 & 3 & 0
\end{array}\right] \Rightarrow \\
{\left[\begin{array}{llll}
1 & 0 & 1 / 16 & 0 \\
0 & 1 & 13 / 8 & 0
\end{array}\right] \Rightarrow a=-\frac{1}{16} c, b=-\frac{13}{8} c \Rightarrow\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\alpha\left[\begin{array}{c}
-1 / 16 \\
-13 / 8 \\
1
\end{array}\right]=\tilde{\alpha}\left[\begin{array}{c}
-1 \\
-26 \\
16
\end{array}\right]}
\end{gathered}
$$

Linear Algebra - Example 2

- Find the determinant, rank, and null-space set of this matrix:

$$
\boldsymbol{B}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 1 \\
2 & 7 & 8
\end{array}\right]
$$

$-\operatorname{det}(\boldsymbol{B})=0$
$-\operatorname{rank}(B)=2$
$-\operatorname{null}(\boldsymbol{B})=\alpha\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right], \forall \alpha \in \mathbb{R}$

- Is there a relationship between the determinant and the rank of a matrix?
- Yes! Matrix drops rank if determinant $=$ zero $\Rightarrow 1$ zero evalue
- True or False?
- $\boldsymbol{A B}=\boldsymbol{B A}$ for all \boldsymbol{A} and \boldsymbol{B}-FALSE!
- \boldsymbol{A} and \boldsymbol{B} are invertible $\rightarrow(\boldsymbol{A}+\boldsymbol{B})$ is invertible-FALSE!

Matrix Exponential - 1

- Exponential of scalar variable:

$$
e^{a}=\sum_{i=0}^{\infty} \frac{a^{i}}{i!}=1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\frac{a^{4}}{4!}+\cdots
$$

- Power series converges $\forall a \in \mathbb{R}$
- How about matrices? For $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, matrix exponential:

$$
e^{\boldsymbol{A}}=\sum_{i=0}^{\infty} \frac{\boldsymbol{A}^{i}}{i!}=\boldsymbol{I}_{n}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\frac{\boldsymbol{A}^{3}}{3!}+\frac{\boldsymbol{A}^{4}}{4!}+\cdots
$$

- What if we have a time-variable?

$$
e^{t \boldsymbol{A}}=\sum_{i=0}^{\infty} \frac{(t \boldsymbol{A})^{i}}{i!}=\boldsymbol{I}_{n}+t \boldsymbol{A}+\frac{(t \boldsymbol{A})^{2}}{2!}+\frac{(t \boldsymbol{A})^{3}}{3!}+\frac{(t \boldsymbol{A})^{4}}{4!}+\cdots
$$

Matrix Exponential Properties

For a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and a constant $t \in \mathbb{R}$:
(1) $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v} \Rightarrow e^{\boldsymbol{A} t} \boldsymbol{v}=e^{\lambda t} \boldsymbol{v}$
(2) ${ }^{2} \operatorname{det}\left(e^{\boldsymbol{A} t}\right)=e^{(\operatorname{trace}(\boldsymbol{A})) t}$
(3) $\left(e^{\boldsymbol{A} t}\right)^{-1}=e^{-\boldsymbol{A} t}$
(1) $e^{\boldsymbol{A}^{\top} t}=\left(e^{\boldsymbol{A} t}\right)^{\top}$
(0) If $\boldsymbol{A}, \boldsymbol{B}$ commute, then: $e^{(\boldsymbol{A}+\boldsymbol{B}) t}=e^{\boldsymbol{A} t} e^{\boldsymbol{B} t}=e^{\boldsymbol{B} t} e^{\boldsymbol{A} t}$
(0) $e^{\boldsymbol{A}\left(t_{1}+t_{2}\right)}=e^{\boldsymbol{A} t_{1}} e^{\boldsymbol{A} t_{2}}=e^{\boldsymbol{A} t_{2}} e^{\boldsymbol{A} t_{1}}$
${ }^{2}$ Trace of a matrix is the sum of its diagonal entries.

When Is It Easy to Find e^{A} ? Method 1

Well...Obviously if we can directly use $e^{\boldsymbol{A}}=\boldsymbol{I}_{n}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\cdots$
Three cases for Method 1
Case $1 \boldsymbol{A}$ is nilpotent ${ }^{3}$, i.e., $\boldsymbol{A}^{k}=0$ for some k. Example:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
5 & -3 & 2 \\
15 & -9 & 6 \\
10 & -6 & 4
\end{array}\right]
$$

Case $2 \boldsymbol{A}$ is idempotent, i.e., $\boldsymbol{A}^{2}=\boldsymbol{A}$. Example:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

Case $3 \boldsymbol{A}$ is of rank one: $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$ for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$

$$
\boldsymbol{A}^{k}=\left(\boldsymbol{v}^{\top} \boldsymbol{u}\right)^{k-1} \boldsymbol{A}, k=1,2, \ldots
$$

${ }^{3}$ Any triangular matrix with 0s along the main diagonal is nilpotent

Method 2 - Jordan Canonical Form

- All matrices, whether diagonalizable or not, have a Jordan canonical form: $\boldsymbol{A}=\boldsymbol{T} \boldsymbol{J} \boldsymbol{T}^{-1}$, then $e^{\boldsymbol{A t}}=\boldsymbol{T} e^{J t} \boldsymbol{T}^{-1}$

$$
\begin{gathered}
\text { - Generally, } \boldsymbol{J}=\left[\begin{array}{lll}
\boldsymbol{J}_{1} & & \\
& \ddots & \\
& & \boldsymbol{J}_{p}
\end{array}\right] \boldsymbol{J}_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & \lambda_{i}
\end{array}\right] \in \mathbb{R}^{n_{i} \times n_{i}} \Rightarrow \\
e^{\boldsymbol{J}_{i} t}=\left[\begin{array}{cccc}
e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \ldots & \frac{t^{n_{i}-1} e^{\lambda_{i} t}}{\left(n_{i}-1\right)!} \\
0 & e^{\lambda_{i} t} & \ddots & \frac{t^{n_{i}-2} e^{\lambda_{i j} t}}{\left(n_{i}-2\right)!} \\
\vdots & 0 & \ddots & \vdots \\
0 & \cdots & 0 & e^{\lambda_{i} t}
\end{array}\right] \Rightarrow e^{\boldsymbol{A} t}=\boldsymbol{T}\left[\begin{array}{ccc}
e^{\boldsymbol{J}_{1} t} & & \\
& \ddots & \\
& & e^{J_{o} t}
\end{array}\right] \boldsymbol{T}^{-1}
\end{gathered}
$$

- Jordan blocks and marginal stability

Examples

- Find $e^{\boldsymbol{A}\left(t-t_{0}\right)}$ for matrix A given by:

$$
\boldsymbol{A}=\boldsymbol{T} \boldsymbol{J} \boldsymbol{T}^{-1}=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]^{-1}
$$

- Solution:

$$
\begin{gathered}
e^{\boldsymbol{A}\left(t-t_{0}\right)}=\boldsymbol{T} e^{\boldsymbol{J}\left(t-t_{0}\right)} \boldsymbol{T}^{-1} \\
=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]\left[\begin{array}{cccc}
e^{-\left(t-t_{0}\right)} & 0 & 0 & 0 \\
0 & 1 & t-t_{0} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{-\left(t-t_{0}\right)}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]^{-1}
\end{gathered}
$$

- Find $e^{\mathbf{A}\left(t-t_{0}\right)}$ for matrix A given by:

$$
\boldsymbol{A}_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] \text { and } \boldsymbol{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right]
$$

Jordan Canonical Form

Theorem (Jordan Canonical Form)

For any $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular $T \in \mathbb{C}^{n \times n}$ such that

$$
T^{-1} A T=J=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{q}
\end{array}\right], \quad J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right] \in \mathbb{C}^{n_{i} \times n_{i}}
$$

- Unique up to permutation of Jordan blocks
- Diagonalizable matrices are special cases with all $n_{i}=1$

Definition (Algebraic and Geometric Multiplicity)

The algebraic multiplicity of an eigenvalue λ_{i} is the sum of the sizes of all Jordan blocks corresponding to it; its geometric multiplicity is the number of all such Jordan blocks.

Finding Jordan Canonical Form

(1) The objective here is to show how to find $A=T J T^{-1}$ for a nondiagonalizable matrix A
(2) Assume that matrix A has n eigenvalues

- k evalues are distinct AND not repeated (multiplicity $=1, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$)
- Hence, there are $n-k$ evalues that are repeated (multiplicity ≥ 2)
(3) First, Find the k eigenvectors relating to these eigenvalues and list the first k eigenvalues on the first k diagonal entries of J. Also, group the first k eigenvectors in the first k columns of T
(4) What's left now: $n-k$ generalized evectors of the other evalues that are repeated at least twice, and the Jordan blocks corresponding to these evalues
(5) Assume that out of the $n-k$ evalues, there are m distinct ones
(0) Find the evectors that correspond to the m distinct ones-you should obtain at least m evectors
((What's left now: find the other generalized evectors (i.e., $n-k-m$ evectors) and Jordan blocks (number of Jordan blocks corresponding to the repeated evalues is equal to the number of linearly independent evectors)
- Example: find the Jordan canonical form of this matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right], \pi_{A}(\lambda)=\lambda^{4}(\lambda-1)=0
$$

- Two eigenvalues: $\lambda_{1}=1$ (not repeated), $\lambda_{2}=0$ (repeated 4 times)
- First: find evector for $\lambda_{1}=1$

$$
\left(A-\lambda_{1} I_{5}\right) v_{1}=0 \Rightarrow\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -1 \\
1 & -1 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & -1 \\
-1 & 1 & 0 & 0 & 0
\end{array}\right] v_{1}=0 \Rightarrow\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & -1
\end{array}\right]^{\top}
$$

- Now, let's find the generalized evectors for $\lambda_{2}=0$ and the associated Jordan block. Note that the A matrix is of rank 3
- First, find the LI evectors of λ_{2} :

$$
\left(A-\lambda_{2} I_{5}\right) v_{2}=0 \Rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right] \quad v_{2}=0 \Rightarrow v_{2} \in \mathcal{N}(A)
$$

- You can see that v_{2} actually spans two column vectors since A is of rank 3
- The two LI evectors generated from $A v_{2}=0$ are:

$$
v_{2}^{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right]^{\top}, v_{2}^{2}=\left[\begin{array}{lllll}
0 & 0 & -1 & 0 & 0
\end{array}\right]^{\top}
$$

- Therefore, we have two Jordan blocks corresponding to λ_{2}
- We have to alternatives for the sizes these two Jordan blocks: either $(3,1)$ or $(2,2)$
- How do we know the correct size?
- The number of Jordan blocks of size exactly j is

$$
2 \operatorname{dim} \operatorname{ker}\left(A-\lambda_{i} I\right)^{j}-\operatorname{dim} \operatorname{ker}\left(A-\lambda_{i} I\right)^{j+1}-\operatorname{dim} \operatorname{ker}\left(A-\lambda_{i} I\right)^{j-1}
$$

- Hence, the number of Jordan blocks of size 1 is: $2 * 2-3-0=1$, hence the size the Jordan blocks of size 3 is also one, which means $(3,1)$ is a legit Jordan block sizes

$$
\Rightarrow J=?
$$

- Now that we have the Jordan blocks, we need to find the two other generalized evectors corresponding to v_{2}^{2}

Examples

- Find $e^{\boldsymbol{A}\left(t-t_{0}\right)}$ for matrix A given by:

$$
\boldsymbol{A}=\boldsymbol{T} \boldsymbol{J} \boldsymbol{T}^{-1}=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]^{-1}
$$

- Solution:

$$
\left.\begin{array}{c}
e^{\boldsymbol{A}\left(t-t_{0}\right)}=\boldsymbol{T} e^{\boldsymbol{J}\left(t-t_{0}\right)} \boldsymbol{T}^{-1} \\
=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]\left[\begin{array}{ccc}
e^{-\left(t-t_{0}\right)} & 0 & 0 \\
0 \\
0 & 1 & t-t_{0}
\end{array} 0\right. \\
0 \\
0
\end{array} \frac{1}{0} \begin{array}{l}
-\left(t-t_{0}\right)
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4}
\end{array}\right]^{-1}
$$

- Find $e^{\mathbf{A}\left(t-t_{0}\right)}$ for matrix A given by:

$$
\boldsymbol{A}_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] \text { and } \boldsymbol{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right]
$$

Solution to the State-Space Equation

- In the next few slides, we'll answer this question: what is a solution to this vector-matrix first order ODE:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A x}(t)+\boldsymbol{B u}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C x}(t)+\boldsymbol{D u}(t)
\end{aligned}
$$

- By solution, we mean a closed-form solution for $\boldsymbol{x}(t)$ and $\boldsymbol{y}(t)$ given:
- An initial condition for the system, i.e., $\boldsymbol{x}\left(t_{\text {initial }}\right)=\boldsymbol{x}(0)$
- A given control input signal, $\boldsymbol{u}(t)$, such as a step-input $(u(t)=1)$, $\operatorname{ramp}(u(t)=t)$, or anything else

The Curious Case of Autonomous Systems—Case 1

- Let's assume that we seek solution to this system first:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t), \boldsymbol{x}(0)=\boldsymbol{x}_{0}=\text { given } \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)
\end{aligned}
$$

- This means that the system operates without any control input-autonomous system (e.g., autonomous vehicles)
- First, let's look at $\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)$-what's the solution to this first order ODE?
- First case: $\boldsymbol{A}=a$ is a scalar $\Rightarrow x(t)=e^{a t} x_{0}$
- Second case: \boldsymbol{A} is a matrix

$$
\Rightarrow \boldsymbol{x}(t)=e^{\boldsymbol{A} t} \boldsymbol{x}_{0} \Rightarrow \boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t)=\boldsymbol{C} e^{\boldsymbol{A t}} \boldsymbol{x}_{0}
$$

- Exponential of scalars is very easy, but exponentials of matrices can be very challenging
- Hence, for an nth order system, where $n \geq 2$, we need to compute the matrix exponential in order to get a solution for the above system-we learned that in the linear algebra revision section

Example (Case 1)

$$
\boldsymbol{x}(t)=e^{\boldsymbol{A} t} \boldsymbol{x}_{0}, \boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t)=\boldsymbol{C} e^{\boldsymbol{A} t} \boldsymbol{x}_{0}
$$

- Find the solution for these two autonomous systems separately:

$$
\begin{aligned}
\boldsymbol{A}_{1} & =\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right], \boldsymbol{C}_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \boldsymbol{x}_{0}^{(1)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\boldsymbol{A}_{2} & =\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right], \boldsymbol{C}_{2}=\left[\begin{array}{ll}
2 & 0
\end{array}\right], \boldsymbol{x}_{0}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Note that this system is diagonalizable (Case A)
- If the system is not diagonalizable, we have to look for other methods to find the matrix exponential
- In particular, we have to find the Jordan form
- Anyway, let's find the state and output solutions now for this diagonalizable system
- Solution:

Case 2—Systems with Inputs

- MIMO (or SISO) LTI dynamical system:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t), \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{t_{0}}=\text { given } \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
\end{aligned}
$$

- The to the above ODE is given by:

$$
\boldsymbol{x}(t)=e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}+\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau
$$

- Clearly the output solution is:

$$
\boldsymbol{y}(t)=\underbrace{\boldsymbol{C}\left(e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}\right)}_{\text {zero input response }}+\underbrace{\boldsymbol{C}\left(\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau\right)+\boldsymbol{D} \boldsymbol{u}(t)}_{\text {zero state response }}
$$

- Question: how do I analytically compute $\boldsymbol{y}(t)$ and $\boldsymbol{x}(t)$?
- Answer: you need to (a) integrate and (b) compute matrix exponentials (given $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{x}_{t_{0}}, \boldsymbol{u}(t)$)

Example (Case 2)

$$
\boldsymbol{x}(t)=e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}+\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau
$$

$$
\boldsymbol{y}(t)=\underbrace{\boldsymbol{C}\left(e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}\right)}_{\text {zero input response }}+\underbrace{\boldsymbol{C}\left(\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau\right)+\boldsymbol{D} \boldsymbol{u}(t)}_{\text {zero state response }}
$$

- Find the solution for these two LTI systems with inputs:

$$
\begin{gathered}
\boldsymbol{A}_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right], \boldsymbol{B}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \boldsymbol{C}_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \boldsymbol{x}_{0}^{(1)}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], D_{1}=0, u_{1}(t)=1 \\
\boldsymbol{A}_{2}=\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right], \boldsymbol{B}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \boldsymbol{C}_{2}=\left[\begin{array}{ll}
2 & 0
\end{array}\right], \boldsymbol{x}_{0}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], D_{2}=1, u_{2}(t)=2 e^{-2 t}
\end{gathered}
$$

- Solution:

Questions And Suggestions?

Please visit engineering.utsa.edu/~taha IFF you want to know more $)^{-}$

