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Vector Space (aka Linear Space)
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Examples of Vector Space
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Supspaces and Product Spaces
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Bases and Dimension of Vector Spaces
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Linear Maps
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One-To-One Mapping
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Matrix Rank
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Matrix Transpose
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Inner Products
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Eigenvalues and Eigenvectors
Eigenvalues/Eigenvectors of a matrix

Evalues/vectors are only defined for square1 matrices
For a matrix A ∈ Rn×n, we always have n evalues/evectors

– Some of these evalues might be distinct, real, repeated, imaginary
– To find evalues(A), solve this equation (In: identity matrix of size n)

det(λIn −A) = 0 or det(A− λIn) = 0⇒ a0λ
n + a1λ

n−1 + · · ·+ an = 0

Example: det
[
a b
c d

]
= ad − bc.

Eigenvectors: A number λ and a non-zero vector v satisfying

Av = λv ⇒ (A− λIn)v = 0

are called an eigenvalue and an eigenvector of A
– λ is an eigenvalue of an n × n-matrix A if and only if λIn − A is not

invertible, which is equivalent to

det(A− λIn) = 0.
1A square matrix has equal number of rows and columns.
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Matrix Inverse
Inverse of a generic 2by2 matrix:

A−1 =
[
a b
c d

]−1
= 1

det(A)

[
d −b
−c a

]
= 1

ad − bc

[
d −b
−c a

]
– Notice that A−1A = AA−1 = I2

Inverse of a generic 3by3 matrix:

A−1 =

a b c
d e f
g h i

−1

= 1
det(A)

 A B C
D E F
G H I

T

= 1
det(A)

 A D G
B E H
C F I


A = (ei − fh) D = −(bi − ch) G = (bf − ce)

B = −(di − fg) E = (ai − cg) H = −(af − cd)
C = (dh − eg) F = −(ah − bg) I = (ae − bd)

det(A) = aA + bB + cC .

– Notice that A−1A = AA−1 = I3
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Linear Algebra — Example 1
Find the eigenvalues, eigenvectors, and inverse of matrix

A =
[

1 4
3 2

]
– Eigenvalues: λ1,2 = 5,−2

– Eigenvectors: v1 =
[
1 1

]>
, v2 =

[
− 4

3 1
]>

– Inverse: A−1 = − 1
10

[
2 −4
−3 1

]
Write A in the matrix diagonal transformation, i.e., A = TDT−1

where D is the diagonal matrix containing the eigenvalues of A:

A =
[
v1 v2 · · · vn

]

λ1

λ2
. . .

λn

 [v1 v2 · · · vn
]−1

– Only valid for matrices with distinct, real eigenvalues
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Rank of a Matrix
Rank of a matrix: rank(A) is equal to the number of linearly
independent rows or columns

– Example 1: rank
([

1 1 0 2
−1 −1 0 −2

])
=?

– Example 2: rank

 1 2 1
−2 −3 1
3 5 0

 =?

Rank computation: reduce the matrix to a simpler form, generally
row echelon form, by elementary row operations

– Example 2 Solution: 1 2 1
−2 −3 1
3 5 0

→ 2r1 + r2

1 2 1
0 1 3
3 5 0

→ −3r1 + r3

1 2 1
0 1 3
0 −1 −3


→ r2 + r3

1 2 1
0 1 3
0 0 0

→ −2r2 + r1

1 0 −5
0 1 3
0 0 0

⇒ rank(A) = 2

For a matrix A ∈ Rm×n: rank(A) ≤ min(m, n)
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Null Space of a Matrix
The Null Space of any matrix A is the subspace K defined as follows:

N(A) = Null(A) = ker(A) = {x ∈ K|Ax = 0}

Null(A) has the following three properties:

– Null(A) always contains the zero vector, since A0 = 0

– If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A)

– If x ∈ Null(A) and c is a scalar, then cx ∈ Null(A)

Example: Find N(A)

A =
[

2 3 5
−4 2 3

]
⇒
[

2 3 5
−4 2 3

]a
b
c

 =
[

0
0

]
⇒
[

2 3 5 0
−4 2 3 0

]
⇒

[
1 0 1/16 0
0 1 13/8 0

]
⇒ a = − 1

16c, b = −13
8 c ⇒

a
b
c

 = α

−1/16
−13/8

1

 = α̃

 −1
−26
16
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Linear Algebra — Example 2

Find the determinant, rank, and null-space set of this matrix:

B =

0 1 2
1 2 1
2 7 8


– det(B) = 0
– rank(B) = 2

– null(B) = α

 3
−2
1

 ,∀ α ∈ R

Is there a relationship between the determinant and the rank of a
matrix?

– Yes! Matrix drops rank if determinant = zero ⇒ 1 zero evalue
True or False?

– AB = BA for all A and B—FALSE!
– A and B are invertible → (A + B) is invertible—FALSE!
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Matrix Exponential — 1

Exponential of scalar variable:

ea =
∞∑

i=0

ai

i! = 1 + a + a2

2! + a3

3! + a4

4! + · · ·

Power series converges ∀ a ∈ R

How about matrices? For A ∈ Rn×n, matrix exponential:

eA =
∞∑

i=0

Ai

i! = In + A + A2

2! + A3

3! + A4

4! + · · ·

What if we have a time-variable?

etA =
∞∑

i=0

(tA)i

i! = In + tA + (tA)2

2! + (tA)3

3! + (tA)4

4! + · · ·
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Matrix Exponential Properties

For a matrix A ∈ Rn×n and a constant t ∈ R:
1 Av = λv ⇒ eAtv = eλtv
2 2det(eAt) = e(trace(A))t

3 (eAt)−1 = e−At

4 eA>t = (eAt)>

5 If A,B commute, then: e(A+B)t = eAteBt = eBteAt

6 eA(t1+t2) = eAt1eAt2 = eAt2eAt1

2Trace of a matrix is the sum of its diagonal entries.
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When Is It Easy to Find eA? Method 1
Well...Obviously if we can directly use eA = In + A + A2

2! + · · ·

Three cases for Method 1
Case 1 A is nilpotent3, i.e., Ak = 0 for some k. Example:

A =

 5 −3 2
15 −9 6
10 −6 4


Case 2 A is idempotent, i.e., A2 = A. Example:

A =

 2 −2 −4
−1 3 4
1 −2 −3


Case 3 A is of rank one: A = uvT for u, v ∈ Rn

Ak = (vT u)k−1A, k = 1, 2, . . .
3Any triangular matrix with 0s along the main diagonal is nilpotent
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Method 2 — Jordan Canonical Form

All matrices, whether diagonalizable or not, have a Jordan canonical
form: A = TJT−1, then eAt = TeJtT−1

Generally, J =

J1
. . .

Jp

 J i =


λi 1

λi
. . .
. . . 1

λi

 ∈ Rni×ni ⇒

eJ i t =


eλi t teλi t . . . tni−1eλi t

(ni−1)!

0 eλi t . . . tni−2eλi t

(ni−2)!
... 0

. . .
...

0 . . . 0 eλi t

 ⇒ eAt = T

eJ1t

. . .
eJot

T−1

Jordan blocks and marginal stability
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Examples

Find eA(t−t0) for matrix A given by:

A = TJT−1 =
[
v1 v2 v3 v4

] 
−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 −1

 [v1 v2 v3 v4
]−1

Solution:
eA(t−t0) = TeJ(t−t0)T−1

=
[
v1 v2 v3 v4

] 
e−(t−t0) 0 0 0

0 1 t − t0 0
0 0 1 0
0 0 0 e−(t−t0)

 [v1 v2 v3 v4
]−1

Find eA(t−t0) for matrix A given by:

A1 =
[

1 0
0 −2

]
and A2 =

[
0 1
0 −2

]
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Jordan Canonical Form
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Finding Jordan Canonical Form
1 The objective here is to show how to find A = TJT−1 for a

nondiagonalizable matrix A
2 Assume that matrix A has n eigenvalues
– k evalues are distinct AND not repeated (multiplicity = 1, λ1, λ2, . . . , λk )
– Hence, there are n − k evalues that are repeated (multiplicity ≥ 2)
3 First, Find the k eigenvectors relating to these eigenvalues and list the

first k eigenvalues on the first k diagonal entries of J . Also, group the
first k eigenvectors in the first k columns of T

4 What’s left now: n − k generalized evectors of the other evalues that are
repeated at least twice, and the Jordan blocks corresponding to these
evalues

5 Assume that out of the n − k evalues, there are m distinct ones
6 Find the evectors that correspond to the m distinct ones—you should

obtain at least m evectors
7 What’s left now: find the other generalized evectors (i.e., n − k −m

evectors) and Jordan blocks (number of Jordan blocks corresponding to
the repeated evalues is equal to the number of linearly independent
evectors)
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Example: find the Jordan canonical form of this matrix

A =


1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 , πA(λ) = λ4(λ− 1) = 0

Two eigenvalues: λ1 = 1 (not repeated), λ2 = 0 (repeated 4 times)
First: find evector for λ1 = 1

(A−λ1I5)v1 = 0⇒


0 0 0 0 0
1 −2 0 0 −1
1 −1 −1 0 −1
0 0 0 −1 −1
−1 1 0 0 0

 v1 = 0⇒
[
1 1 1 1 −1

]>
Now, let’s find the generalized evectors for λ2 = 0 and the associated
Jordan block. Note that the A matrix is of rank 3
First, find the LI evectors of λ2:

(A− λ2I5)v2 = 0⇒

 1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 v2 = 0⇒ v2 ∈ N (A)
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You can see that v2 actually spans two column vectors since A is of
rank 3
The two LI evectors generated from Av2 = 0 are:

v1
2 =

[
0 0 0 1 0

]>
, v2

2 =
[
0 0 −1 0 0

]>
Therefore, we have two Jordan blocks corresponding to λ2
We have to alternatives for the sizes these two Jordan blocks: either
(3,1) or (2,2)
How do we know the correct size?
The number of Jordan blocks of size exactly j is

2 dim ker(A− λi I)j − dim ker(A− λi I)j+1 − dim ker(A− λi I)j−1

Hence, the number of Jordan blocks of size 1 is: 2 ∗ 2− 3− 0 = 1,
hence the size the Jordan blocks of size 3 is also one, which means
(3, 1) is a legit Jordan block sizes

⇒ J =?

Now that we have the Jordan blocks, we need to find the two other
generalized evectors corresponding to v2

2
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Examples

Find eA(t−t0) for matrix A given by:

A = TJT−1 =
[
v1 v2 v3 v4

] 
−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 −1

 [v1 v2 v3 v4
]−1

Solution:
eA(t−t0) = TeJ(t−t0)T−1

=
[
v1 v2 v3 v4

] 
e−(t−t0) 0 0 0

0 1 t − t0 0
0 0 1 0
0 0 0 e−(t−t0)

 [v1 v2 v3 v4
]−1

Find eA(t−t0) for matrix A given by:

A1 =
[

1 0
0 −2

]
and A2 =

[
0 1
0 −2

]
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Solution to the State-Space Equation
In the next few slides, we’ll answer this question: what is a solution
to this vector-matrix first order ODE:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

By solution, we mean a closed-form solution for x(t) and y(t) given:
– An initial condition for the system, i.e., x(tinitial ) = x(0)
– A given control input signal, u(t), such as a step-input (u(t) = 1),

ramp (u(t) = t), or anything else
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The Curious Case of Autonomous Systems—Case 1
Let’s assume that we seek solution to this system first:

ẋ(t) = Ax(t), x(0) = x0 = given
y(t) = Cx(t)

This means that the system operates without any control
input—autonomous system (e.g., autonomous vehicles)
First, let’s look at ẋ(t) = Ax(t)—what’s the solution to this first
order ODE?

– First case: A = a is a scalar ⇒ x(t) = eatx0
– Second case: A is a matrix

⇒ x(t) = eAtx0 ⇒ y(t) = Cx(t) = CeAtx0

Exponential of scalars is very easy, but exponentials of matrices can
be very challenging
Hence, for an nth order system, where n ≥ 2, we need to compute
the matrix exponential in order to get a solution for the above
system—we learned that in the linear algebra revision section
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Example (Case 1)

x(t) = eAtx0, y(t) = Cx(t) = CeAtx0

Find the solution for these two autonomous systems separately:

A1 =
[

1 0
0 −2

]
,C1 =

[
1 2

]
, x(1)

0 =
[

1
2

]
A2 =

[
0 1
0 −2

]
,C2 =

[
2 0

]
, x(2)

0 =
[
−1
1

]
Note that this system is diagonalizable (Case A)
If the system is not diagonalizable, we have to look for other
methods to find the matrix exponential
In particular, we have to find the Jordan form
Anyway, let’s find the state and output solutions now for this
diagonalizable system
Solution:
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Case 2—Systems with Inputs
MIMO (or SISO) LTI dynamical system:

ẋ(t) = Ax(t) + Bu(t), x(t0) = xt0 = given
y(t) = Cx(t) + Du(t)

The to the above ODE is given by:

x(t) = eA(t−t0)xt0 +
∫ t

t0

eA(t−τ)Bu(τ) dτ

Clearly the output solution is:

y(t) = C
(

eA(t−t0)xt0

)
︸ ︷︷ ︸
zero input response

+ C
(∫ t

t0

eA(t−τ)Bu(τ) dτ
)

+ Du(t)︸ ︷︷ ︸
zero state response

Question: how do I analytically compute y(t) and x(t)?

Answer: you need to (a) integrate and (b) compute matrix
exponentials (given A,B,C ,D, xt0 ,u(t))
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Example (Case 2)

x(t) = eA(t−t0)xt0 +
∫ t

t0

eA(t−τ)Bu(τ) dτ

y(t) = C
(

eA(t−t0)xt0

)
︸ ︷︷ ︸
zero input response

+ C
(∫ t

t0

eA(t−τ)Bu(τ) dτ
)

+ Du(t)︸ ︷︷ ︸
zero state response

Find the solution for these two LTI systems with inputs:

A1 =
[

1 0
0 −2

]
,B1 =

[
1
1

]
,C1 =

[
1 2

]
, x(1)

0 =
[

1
2

]
,D1 = 0, u1(t) = 1

A2 =
[

0 1
0 −2

]
,B2 =

[
1
−1

]
,C2 =

[
2 0

]
, x(2)

0 =
[
−1
1

]
,D2 = 1, u2(t) = 2e−2t

Solution:
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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