Vector Spaces

Matrix Propertie

Examples 0000 Matrix Exponential and Jordan Forms

State Space Solutions

Module 03 Linear Algebra Review & Solutions to State Space

Ahmad F. Taha

EE 5143: Linear Systems and Control

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha

September 7, 2017

Vector Space (aka Linear Space)

A (real) vector space V is a set with two operations:

- Vector sum $+: V + V \rightarrow V$
- Scalar multiplication $\cdot : \mathbb{R} \times V \to V$

that has the following properties

1 Commutative:
$$x + y = y + x$$
, $\forall x, y \in V$

2 Associative:
$$(x + y) + z = x + (y + z), \forall x, y, z \in V$$

- **3** Zero element: $\exists ! 0 \in V$ such that 0 + x = x, $\forall x \in V$
- 4 Inverse: $\forall x \in V$, $\exists (-x) \in V$ such that x + (-x) = 0

5
$$(\alpha\beta)x = \alpha(\beta x), \forall \alpha, \beta \in \mathbb{R}, x \in V$$

- $(\alpha + \beta) \mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}, \, \forall \alpha, \beta \in \mathbb{R}, \, \mathbf{x} \in \mathbf{V}$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions

- $\mathbf{1} \mathbb{R}^n$ with vector sum and scalar multiplication
- **2** $\mathbb{R}^{m \times n}$: the set of all *m*-by-*n* matrices
- **3** P_n : the set of all real polynomials in *s* with degree up to *n*:

$$\mathcal{P}_n := \{a_n s^n + \cdots + a_1 s + a_0 \mid a_0, \ldots, a_n \in \mathbb{R}\}$$

4 Give an index set \mathcal{I} , the set of all mappings from \mathcal{I} to \mathbb{R}^n :

$$\mathcal{F}(\mathcal{I};\mathbb{R}^n):=\{f:\mathcal{I}\to\mathbb{R}^n\}$$

- **5** $\{f : \mathbb{R}_+ \to \mathbb{R}^n \mid f \text{ is differentiable}\}$
- **6** The set of all functions f(t), $t \ge 0$, with a Laplace transform
- **7** The set of all square integrable functions $f : \mathbb{R}_+ \to \mathbb{R}$
- **(3)** The set of all solutions $x(t) \in \mathbb{R}^n$, $t \ge 0$, to autonomous LTI system

$$\dot{x} = Ax, \quad x(0) = x_0$$

Definition (Subspace)

W is a subspace of vector space V if $W \subset V$ and W itself is a vector space under the same vector sum and scalar multiplication operations

Example:

- span { v_1, v_2, \ldots, v_k } := { $\alpha_1 v_1 + \cdots + \alpha_k v_k : \alpha_i \in \mathbb{R}$ } $\subset V$
- Diagonal and symmetric matrices
- $\mathcal{P}_0 \subset \mathcal{P}_1 \subset \mathcal{P}_2 \subset \cdots \subset \mathcal{P}_\infty$

Definition (Product space)

Given two vector spaces V_1 and V_2 , their direct product is the vector space $V_1 \times V_2 := \{(v_1, v_2) \mid v_1 \in V_1, v_2 \in V_2\}$

Example:

- $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
- $\mathcal{F}(\mathcal{I};\mathbb{R}^2) = \mathcal{F}(\mathcal{I};\mathbb{R}) imes \mathcal{F}(\mathcal{I};\mathbb{R})$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions Bases and Dimension of Vector Spaces

 v_1, \ldots, v_k in vector space V are linearly independent if for $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$,

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0} \quad \Rightarrow \quad \alpha_1 = \dots = \alpha_k = \mathbf{0}$$

A set of vectors $\{v_1,\ldots,v_k\}$ is a basis of the vector space V if

- v_1, \ldots, v_k are linear independent in V
- $V = \operatorname{span} \{v_1, \ldots, v_k\}$

Or equivalently,

- each $v \in V$ has a unique expression $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$
- $(\alpha_1, \ldots, \alpha_k)$ is the coordinate of v in this basis

Definition (Dimension)

The dimension of a vector space V is the number of vectors in any of its basis, and is denoted dim V.

Examples of finite and infinite dimensional vector spaces:

A map $f: V \to W$ between two vector spaces V and W is linear if

$$f(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 f(v_1) + \alpha_2 f(v_2)$$

Example:

- $x \in \mathbb{R}^n \mapsto Ax \in \mathbb{R}^m$ for some matrix $A \in \mathbb{R}^{m \times n}$
- Projection $x = (x_1, \ldots, x_n) \in \mathbb{R}^n \mapsto x_i \in \mathbb{R}$

•
$$X \in \mathbb{R}^{m \times n} \mapsto X^T \in \mathbb{R}^{n \times m}$$

- $X \in \mathbb{R}^{n \times n} \mapsto A_1 X + X A_2 \in \mathbb{R}^{n \times n}$ for constant $A_1, A_2 \in \mathbb{R}^{n \times n}$
- A continuous function on $[0,1] \mapsto \int_0^t f(x) \, dx \in \mathbb{R}$
- Polynomial $p(s) \in \mathcal{P}_n \mapsto p'(s) \in \mathcal{P}_{n-1}$
- Solutions (zero-state, zero-input responses) of an LTI system

A linear map $f: V \to W$ must map $0 \in V$ to $0 \in W$

The composition of two linear maps $f: V \to W$ and $g: W \to U$ is also linear: $g \circ f: v \in V \mapsto g(f(v)) \in U$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions One-To-One Mapping

Matrix $A \in \mathbb{R}^{m \times n}$ considered as a linear map \mathbb{R}^n to \mathbb{R}^m has null space $\mathcal{N}(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$

- Set of all vectors orthogonal to all rows of A
- Characterize ambiguity in solving equation Ax = y

$A \in \mathbb{R}^{m imes n}$ is one-to-one if and only if

- Columns of A are linearly independent
- Rows of A span \mathbb{R}^n
- A has rank n (full column rank)
- A has a left inverse: $\exists B \in \mathbb{R}^{n \times m}$ such that $BA = I_n$

Vector Spaces	Matrix Properties •0000	Examples 0000	Matrix Exponential and Jordan Forms	State Space Solutions
Matrix Ra	nk			

The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is its maximum number of linearly independent columns (or rows), or equivalently, dim $\mathcal{R}(A)$

- $\operatorname{Rank}(A) \leq \min(m, n)$
- Rank $(A) = \text{Rank} (A^T)$
- $\operatorname{Rank}(A) + \dim \mathcal{N}(A) = n$ (conservation of dimension)

Matrix $A \in \mathbb{R}^{m \times n}$ is full rank if $\text{Rank}(A) = \min(m, n)$, which means

- (for skinny matrices) independent column or injective maps
- (for fat matrices) independent rows or surjective maps
- (for square matrices) nonsingular or bijective maps

Vector Spaces	Matrix Properties	Examples	Matrix Exponential and Jordan Forms	State Space Solutions
000000	0000	0000	000000000	000000
Matrix 7	Transpose			

When $A \in \mathbb{R}^{m \times n}$ is considered as a linear map from \mathbb{R}^n to \mathbb{R}^m , its transpose $A^T \in \mathbb{R}^{n \times m}$ is a linear map from \mathbb{R}^m back to \mathbb{R}^n

The following are equivalent

- A is one-to-one
- **2** A^T is onto
- **3** det $A^T A \neq 0$
- **4** $A^T A \in \mathbb{R}^{n \times n}$ is bijective

More generally, for any $A \in \mathbb{R}^{m imes n}$

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$

•
$$\mathcal{N}(A^T) = \mathcal{R}(A)^{\perp}$$

The following are equivalent

- 1 A is onto
- **2** A^T is one-to-one
- **3** det $AA^T \neq 0$
- **4** $AA^T \in \mathbb{R}^{m \times m}$ is bijective

Vector Spaces	Matrix Properties	Examples	Matrix Exponential and Jordan Forms	State Space Solutions
000000	00000	0000	000000000	000000
Inner Pr	Inner Products			

For $x, y \in \mathbb{R}^n$, their inner product is

$$\langle x, y \rangle := x^T y = x_1 y_1 + \dots + x_n y_n$$

For $x, y, z \in \mathbb{R}^n$

• $\langle x, y \rangle = \langle y, x \rangle$

•
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle x, y \rangle$$

• $\langle x, x \rangle = \|x\|^2 \ge 0$, where $\|x\|$ is the Euclidean norm of x:

$$||x|| := \sqrt{x^T x} = \sqrt{x_1^2 + \dots + x_n^2}$$

Theorem (Cauchy-Schwartz Inequality)

 $|\langle x, y \rangle| \le ||x|| \cdot ||y||, \quad \forall x, y \in \mathbb{R}^n$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions

Eigenvalues/Eigenvectors of a matrix

- Evalues/vectors are only defined for square¹ matrices
- For a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we always have *n* evalues/evectors
- Some of these evalues might be distinct, real, repeated, imaginary
- To find evalues(A), solve this equation (I_n : identity matrix of size n)

 $\det(\lambda \boldsymbol{I}_n - A) = 0 \text{ or } \det(\boldsymbol{A} - \lambda \boldsymbol{I}_n) = 0 \Rightarrow a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0$

- **Example**: det $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad bc$.
- **Eigenvectors**: A number λ and a non-zero vector \mathbf{v} satisfying

$$\boldsymbol{A}\boldsymbol{v} = \lambda \boldsymbol{v} \Rightarrow (\boldsymbol{A} - \lambda \boldsymbol{I}_n) \boldsymbol{v} = 0$$

are called an eigenvalue and an eigenvector of A

- λ is an eigenvalue of an $n \times n$ -matrix **A** if and only if $\lambda I_n - A$ is not invertible, which is equivalent to

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}_n) = 0.$$

¹A square matrix has equal number of rows and columns.

Vector Spaces	Matrix Properties	Examples	Matrix Exponential and Jordan Forms	State Space Solutions
000000	0000	0000	000000000	000000
Matrix I	nverse			

• Inverse of a generic 2by2 matrix:

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

– Notice that $\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{A}\boldsymbol{A}^{-1}=\boldsymbol{I}_2$

• Inverse of a generic 3by3 matrix:

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix}^{T} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} A & D & G \\ B & E & H \\ C & F & I \end{bmatrix}$$
$$A = (ei - fh) \quad D = -(bi - ch) \quad G = (bf - ce)$$
$$B = -(di - fg) \quad E = (ai - cg) \quad H = -(af - cd)$$
$$C = (dh - eg) \quad F = -(ah - bg) \quad I = (ae - bd)$$
$$\boxed{\det(\mathbf{A}) = aA + bB + cC.}$$

- Notice that
$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = I_3$$

• Find the eigenvalues, eigenvectors, and inverse of matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

– Eigenvalues: $\lambda_{1,2} = 5, -2$

– Eigenvectors: $\mathbf{v}_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}, \mathbf{v}_2 = \begin{bmatrix} -\frac{4}{3} & 1 \end{bmatrix}^{\top}$

- Inverse:
$$\mathbf{A}^{-1} = -\frac{1}{10} \begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$$

• Write **A** in the matrix **diagonal transformation**, i.e., $\mathbf{A} = TDT^{-1}$ where **D** is the diagonal matrix containing the eigenvalues of **A**:

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{bmatrix}^{-1}$$

- Only valid for matrices with distinct, real eigenvalues

Vector Spaces	Matrix Properties 00000	Examples 0000	Matrix Exponential and Jordan Forms	State Space Solutions
Rank of	a Matrix			

- Rank of a matrix: rank(**A**) is equal to the number of linearly independent rows or columns
- Example 1: rank $\begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & -1 & 0 & -2 \end{bmatrix} =?$ - Example 2: rank $\begin{pmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} =?$
- Rank computation: reduce the matrix to a simpler form, generally row echelon form, by elementary row operations
- Example 2 Solution:

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \rightarrow 2r_1 + r_2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} \rightarrow -3r_1 + r_3 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
$$\rightarrow r_2 + r_3 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow -2r_2 + r_1 \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow rank(\mathbf{A}) = 2$$

• For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$: rank $(\mathbf{A}) \le \min(m, n)$

Vector Spaces 000000	Matrix Properties	Examples 0000	Matrix Exponential and Jordan Forms 0000000000	State Space Solutions
Null Spa	ce of a Mat	trix		

 $\bullet\,$ The Null Space of any matrix ${\boldsymbol{A}}$ is the subspace ${\mathcal{K}}$ defined as follows:

$$N(\mathbf{A}) = Null(\mathbf{A}) = ker(\mathbf{A}) = \{\mathbf{x} \in \mathcal{K} | \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

- Null(A) has the following three properties:
- Null(A) always contains the zero vector, since A0=0
- If $\mathbf{x} \in \mathsf{Null}(\mathbf{A})$ and $\mathbf{y} \in \mathsf{Null}(\mathbf{A})$, then $\mathbf{x} + \mathbf{y} \in \mathsf{Null}(\mathbf{A})$
- If $\pmb{x} \in \mathsf{Null}(\pmb{A})$ and c is a scalar, then $c\pmb{x} \in \mathsf{Null}(\pmb{A})$
- Example: Find N(A)

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 \\ -4 & 2 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 5 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 & 5 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\frac{1}{2} \begin{bmatrix} a \\ 2 & 3 & 5 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} a \\ 2 & 3 & 5 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} a \\ 2 & 3 & 5 \\ 0$$

• Find the determinant, rank, and null-space set of this matrix:

$$\boldsymbol{B} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & 8 \end{bmatrix}$$

$$- \det(\boldsymbol{B}) = 0$$

$$- \operatorname{rank}(\boldsymbol{B}) = 2$$

$$- \operatorname{null}(\boldsymbol{B}) = \alpha \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \forall \ \alpha \in \mathbb{R}$$

- Is there a relationship between the determinant and the rank of a matrix?
- Yes! Matrix drops rank if determinant = zero \Rightarrow 1 zero evalue
- True or False?
- **AB** = **BA** for all **A** and **B**—**FALSE!**
- **A** and **B** are invertible \rightarrow (**A** + **B**) is invertible—FALSE!

Vector Spaces	Matrix Properties	Examples	Matrix Exponential and Jordan Forms	State Space Solutions
000000	00000	0000	00000000	000000
Matrix E	Exponential	— 1		

• Exponential of scalar variable:

$$e^{a} = \sum_{i=0}^{\infty} \frac{a^{i}}{i!} = 1 + a + \frac{a^{2}}{2!} + \frac{a^{3}}{3!} + \frac{a^{4}}{4!} + \cdots$$

- Power series converges $\forall a \in \mathbb{R}$
- How about matrices? For $\mathbf{A} \in \mathbb{R}^{n \times n}$, matrix exponential:

$$e^{\mathbf{A}} = \sum_{i=0}^{\infty} \frac{\mathbf{A}^{i}}{i!} = \mathbf{I}_{n} + \mathbf{A} + \frac{\mathbf{A}^{2}}{2!} + \frac{\mathbf{A}^{3}}{3!} + \frac{\mathbf{A}^{4}}{4!} + \cdots$$

• What if we have a time-variable?

$$e^{tA} = \sum_{i=0}^{\infty} \frac{(tA)^i}{i!} = I_n + tA + \frac{(tA)^2}{2!} + \frac{(tA)^3}{3!} + \frac{(tA)^4}{4!} + \cdots$$

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a constant $t \in \mathbb{R}$:

$$e^{2} \det(e^{\mathbf{A}t}) = e^{(\operatorname{trace}(\mathbf{A}))t}$$

3
$$(e^{At})^{-1} = e^{-At}$$

$$e^{\mathbf{A}^\top t} = (e^{\mathbf{A}t})^\top$$

③ If **A**, **B** commute, then: $e^{(A+B)t} = e^{At}e^{Bt} = e^{Bt}e^{At}$

$$\bullet \ e^{\mathbf{A}(t_1+t_2)} = e^{\mathbf{A}t_1}e^{\mathbf{A}t_2} = e^{\mathbf{A}t_2}e^{\mathbf{A}t_1}$$

²Trace of a matrix is the sum of its diagonal entries.

 Vector Spaces
 Matrix Properties
 Examples
 Matrix Exponential and Jordan Forms
 State Space Solutions

 When Is It Easy to Find e^A?
 Method 1

Well...Obviously if we can directly use $e^{\mathbf{A}} = \mathbf{I}_n + \mathbf{A} + \frac{\mathbf{A}^2}{2!} + \cdots$

Three cases for Method 1

Case 1 **A** is nilpotent³, i.e., $\mathbf{A}^{k} = 0$ for some k. Example:

$$\mathbf{A} = \begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix}$$

Case 2 **A** is idempotent, i.e., $\mathbf{A}^2 = \mathbf{A}$. Example:

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

Case 3 **A** is of rank one: $\mathbf{A} = \mathbf{u}\mathbf{v}^T$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$

$$\boldsymbol{A}^{k} = (\boldsymbol{v}^{T}\boldsymbol{u})^{k-1}\boldsymbol{A}, \ k = 1, 2, \dots$$

³Any triangular matrix with 0s along the main diagonal is nilpotent

©Ahmad F. Taha

Module 03 — Linear Algebra Review & Solutions to State Space

All matrices, whether diagonalizable or not, have a Jordan canonical form: A = TJT⁻¹, then e^{At} = Te^{Jt}T⁻¹

• Generally,
$$\boldsymbol{J} = \begin{bmatrix} \boldsymbol{J}_1 & & \\ & \ddots & \\ & & \boldsymbol{J}_p \end{bmatrix} \boldsymbol{J}_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ & & & & \lambda_i \end{bmatrix} \in \mathbb{R}^{n_i \times n_i} \Rightarrow$$

$$e^{\boldsymbol{J}_{i}t} = \begin{bmatrix} e^{\lambda_{i}t} & te^{\lambda_{i}t} & \dots & \frac{t^{n_{i}-1}e^{\lambda_{i}t}}{(n_{i}-1)!} \\ 0 & e^{\lambda_{i}t} & \ddots & \frac{t^{n_{i}-2}e^{\lambda_{i}t}}{(n_{i}-2)!} \\ \vdots & 0 & \ddots & \vdots \\ 0 & \dots & 0 & e^{\lambda_{i}t} \end{bmatrix} \Rightarrow e^{\boldsymbol{A}t} = \boldsymbol{T} \begin{bmatrix} e^{\boldsymbol{J}_{1}t} & & \\ & \ddots & \\ & & e^{\boldsymbol{J}_{o}t} \end{bmatrix} \boldsymbol{T}^{-1}$$

• Jordan blocks and marginal stability

Vector Spaces	Matrix Properties	Examples 0000	Matrix Exponential and Jordan Forms	State Space Solutions
Examples				

• Find $e^{A(t-t_0)}$ for matrix A given by:

$$\boldsymbol{A} = \boldsymbol{T} \boldsymbol{J} \boldsymbol{T}^{-1} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{v}_4 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{v}_4 \end{bmatrix}^{-1}$$

• Solution:

$$e^{\mathbf{A}(t-t_0)} = \mathbf{T}e^{\mathbf{J}(t-t_0)}\mathbf{T}^{-1}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \begin{bmatrix} e^{-(t-t_0)} & 0 & 0 & 0\\ 0 & 1 & t-t_0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & e^{-(t-t_0)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}^{-1}$$

• Find $e^{A(t-t_0)}$ for matrix A given by:

$$oldsymbol{A}_1 = egin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
 and $oldsymbol{A}_2 = egin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions

Theorem (Jordan Canonical Form)

For any $A \in \mathbb{R}^{n \times n}$, there exists a nonsingular $T \in \mathbb{C}^{n \times n}$ such that

$$T^{-1}AT = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_q \end{bmatrix}, \qquad J_i = \begin{bmatrix} \lambda_i & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{bmatrix} \in \mathbb{C}^{n_i \times n_i}$$

- Unique up to permutation of Jordan blocks
- Diagonalizable matrices are special cases with all $n_i = 1$

Definition (Algebraic and Geometric Multiplicity)

The algebraic multiplicity of an eigenvalue λ_i is the sum of the sizes of all Jordan blocks corresponding to it; its geometric multiplicity is the number of all such Jordan blocks.

Finding Jordan Canonical Form

- The objective here is to show how to find A = TJT⁻¹ for a nondiagonalizable matrix A
- Assume that matrix A has n eigenvalues
- k evalues are distinct AND not repeated (multiplicity = 1, $\lambda_1, \lambda_2, \dots, \lambda_k$)
- Hence, there are n k evalues that are repeated (multiplicity ≥ 2)
- First, Find the k eigenvectors relating to these eigenvalues and list the first k eigenvalues on the first k diagonal entries of J. Also, group the first k eigenvectors in the first k columns of T
- What's left now: n k generalized evectors of the other evalues that are repeated at least twice, and the Jordan blocks corresponding to these evalues
- **(**) Assume that out of the n k evalues, there are *m* distinct ones
- Find the evectors that correspond to the *m* distinct ones—you should obtain at least *m* evectors
- What's left now: find the other generalized evectors (i.e., n k m evectors) and Jordan blocks (number of Jordan blocks corresponding to the repeated evalues is equal to the number of linearly independent evectors)

Vector	Spaces
0000	00

Matrix Properties

Examples 0000 State Space Solutions

• Example: find the Jordan canonical form of this matrix

$$A = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 1 & -1 & 0 & 0 & -1 \ 1 & -1 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 & -1 \ -1 & 1 & 0 & 0 & 1 \end{bmatrix}, \pi_A(\lambda) = \lambda^4(\lambda-1) = 0$$

• Two eigenvalues: $\lambda_1 = 1$ (not repeated), $\lambda_2 = 0$ (repeated 4 times)

• First: find evector for $\lambda_1 = 1$

$$(A - \lambda_1 I_5)v_1 = 0 \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & -1 \\ 1 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 \\ -1 & 1 & 0 & 0 & 0 \end{bmatrix} v_1 = 0 \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & -1 \end{bmatrix}^\top$$

- Now, let's find the generalized evectors for $\lambda_2 = 0$ and the associated Jordan block. Note that the A matrix is of rank 3
- First, find the LI evectors of λ_2 :

$$(A - \lambda_2 I_5)v_2 = 0 \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 & 1 \end{bmatrix} v_2 = 0 \Rightarrow v_2 \in \mathcal{N}(A)$$

Vector Spaces

Matrix Properties

Examples 0000 Matrix Exponential and Jordan Forms

State Space Solutions

- You can see that v₂ actually spans two column vectors since A is of rank 3
- The two LI evectors generated from $Av_2 = 0$ are:

$$\mathbf{v}_2^1 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}^\top, \mathbf{v}_2^2 = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \end{bmatrix}^\top$$

- $\bullet\,$ Therefore, we have two Jordan blocks corresponding to λ_2
- We have to alternatives for the sizes these two Jordan blocks: either (3,1) or (2,2)
- How do we know the correct size?
- The number of Jordan blocks of size exactly j is

2 dim ker $(A - \lambda_i I)^j$ – dim ker $(A - \lambda_i I)^{j+1}$ – dim ker $(A - \lambda_i I)^{j-1}$

• Hence, the number of Jordan blocks of size 1 is: 2 * 2 - 3 - 0 = 1, hence the size the Jordan blocks of size 3 is also one, which means (3, 1) is a legit Jordan block sizes

$$\Rightarrow J = ?$$

 Now that we have the Jordan blocks, we need to find the two other generalized evectors corresponding to v₂²

Vector Spaces	Matrix Properties	Examples 0000	Matrix Exponential and Jordan Forms	State Space Solutions
Examples				

• Find $e^{A(t-t_0)}$ for matrix A given by:

$$\boldsymbol{A} = \boldsymbol{T} \boldsymbol{J} \boldsymbol{T}^{-1} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{v}_4 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 & \boldsymbol{v}_4 \end{bmatrix}^{-1}$$

• Solution:

$$e^{\mathbf{A}(t-t_0)} = \mathbf{T}e^{\mathbf{J}(t-t_0)}\mathbf{T}^{-1}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \begin{bmatrix} e^{-(t-t_0)} & 0 & 0 & 0\\ 0 & 1 & t-t_0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & e^{-(t-t_0)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}^{-1}$$

• Find $e^{A(t-t_0)}$ for matrix A given by:

$$oldsymbol{A}_1 = egin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
 and $oldsymbol{A}_2 = egin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions

• In the next few slides, we'll answer this question: what is a solution to this vector-matrix first order ODE:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

- By solution, we mean a closed-form solution for $\mathbf{x}(t)$ and $\mathbf{y}(t)$ given:
- An initial condition for the system, i.e., $m{x}(t_{\textit{initial}}) = m{x}(0)$
- A given control input signal, u(t), such as a step-input (u(t) = 1), ramp (u(t) = t), or anything else

• Let's assume that we seek solution to this system first:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t), \boldsymbol{x}(0) = \boldsymbol{x}_0 = ext{given}$$

 $\boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x}(t)$

- This means that the system operates without any control input—autonomous system (e.g., autonomous vehicles)
- First case: $\mathbf{A} = a$ is a scalar $\Rightarrow x(t) = e^{at}x_0$
- Second case: **A** is a matrix

$$\Rightarrow \mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 \Rightarrow \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}_0$$

- Exponential of scalars is very easy, but exponentials of matrices can be very challenging
- Hence, for an *n*th order system, where n ≥ 2, we need to compute the matrix exponential in order to get a solution for the above system—we learned that in the linear algebra revision section

$$oldsymbol{x}(t)=e^{oldsymbol{A}t}oldsymbol{x}_0,oldsymbol{y}(t)=oldsymbol{C}oldsymbol{x}(t)=oldsymbol{C}e^{oldsymbol{A}t}oldsymbol{x}_0$$

• Find the solution for these two autonomous systems separately:

$$\begin{aligned} \boldsymbol{A}_{1} &= \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}, \boldsymbol{C}_{1} &= \begin{bmatrix} 1 & 2 \end{bmatrix}, \boldsymbol{x}_{0}^{(1)} &= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \boldsymbol{A}_{2} &= \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}, \boldsymbol{C}_{2} &= \begin{bmatrix} 2 & 0 \end{bmatrix}, \boldsymbol{x}_{0}^{(2)} &= \begin{bmatrix} -1 \\ 1 \end{bmatrix} \end{aligned}$$

- Note that this system is diagonalizable (Case A)
- If the system is not diagonalizable, we have to look for other methods to find the matrix exponential
- In particular, we have to find the Jordan form
- Anyway, let's find the state and output solutions now for this diagonalizable system

• Solution:

Vector Spaces Matrix Properties Examples Matrix Exponential and Jordan Forms State Space Solutions

• MIMO (or SISO) LTI dynamical system:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A} \boldsymbol{x}(t) + \boldsymbol{B} \boldsymbol{u}(t), \boldsymbol{x}(t_0) = \boldsymbol{x}_{t_0} = ext{given}$$

 $\boldsymbol{y}(t) = \boldsymbol{C} \boldsymbol{x}(t) + \boldsymbol{D} \boldsymbol{u}(t)$

• The to the above ODE is given by:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}_{t_0} + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) \, d\tau$$

• Clearly the output solution is:

$$\mathbf{y}(t) = \underbrace{\mathbf{C}\left(e^{\mathbf{A}(t-t_0)}\mathbf{x}_{t_0}\right)}_{\text{zero input response}} + \underbrace{\mathbf{C}\left(\int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) \, d\tau\right) + \mathbf{D}\mathbf{u}(t)}_{\text{zero state response}}$$

- Question: how do I analytically compute y(t) and x(t)?
- Answer: you need to (a) integrate and (b) compute matrix exponentials (given *A*, *B*, *C*, *D*, *x*_{t₀}, *u*(*t*))

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}_{t_0} + \int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) d\tau$$

$$\mathbf{y}(t) = \underbrace{\mathbf{C}\left(e^{\mathbf{A}(t-t_0)}\mathbf{x}_{t_0}\right)}_{\text{zero input response}} + \underbrace{\mathbf{C}\left(\int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau) \, d\tau\right) + \mathbf{D}\mathbf{u}(t)}_{\text{zero state response}}$$

• Find the solution for these two LTI systems with inputs:

$$\boldsymbol{A}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}, \boldsymbol{B}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \boldsymbol{C}_{1} = \begin{bmatrix} 1 & 2 \end{bmatrix}, \boldsymbol{x}_{0}^{(1)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, D_{1} = 0, u_{1}(t) = 1$$
$$\boldsymbol{A}_{2} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}, \boldsymbol{B}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \boldsymbol{C}_{2} = \begin{bmatrix} 2 & 0 \end{bmatrix}, \boldsymbol{x}_{0}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, D_{2} = 1, u_{2}(t) = 2e^{-2t}$$

• Solution:

Thank You!

Please visit engineering.utsa.edu/~taha IFF you want to know more ©