Your Name:

Your Signature:
\square

- Exam duration: 1 hour and 20 minutes.
- This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty much everything.
- No bathroom break allowed.
- If we find that a laptop, phone, tablet or any electronic device near or on a person and even if the electronics device is switched off, it will lead to a straight zero in the finals.
- No calculators of any kind are allowed.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your final answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- This exam has 7 pages, plus this cover sheet. Please make sure that your exam is complete, that you read all the exam directions and rules.

Question Number	Maximum Points	Your Score
1	45	
2	35	
3	20	
Total	100	

1. (45 total points) Answer the following unrelated miscellaneous questions.
(a) (10 points) Consider the following nonlinear system:

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{1}(t) x_{2}(t)-2 x_{1}(t) \\
& \dot{x}_{2}(t)=x_{1}(t)-x_{2}(t)-1
\end{aligned}
$$

Find two equilibrium points of the nonlinear system. By two equilibirum points I mean:

$$
\boldsymbol{x}_{e}^{(1)}=\left[\begin{array}{l}
x_{e 1}^{(1)} \\
x_{e 2}^{(1)}
\end{array}\right], \text { and } \boldsymbol{x}_{e}^{(2)}=\left[\begin{array}{l}
x_{e 1}^{(2)} \\
x_{e 2}^{(2)}
\end{array}\right] .
$$

The equilibrium points for this system are:

- $x_{e}^{(1)}=\left[\begin{array}{l}3 \\ 2\end{array}\right], x_{e}^{(2)}=\left[\begin{array}{c}0 \\ -1\end{array}\right]$.
(b) (10 points) You are given a matrix A with the characteristic polynomial

$$
\pi_{\boldsymbol{A}}(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)^{2}\left(\lambda-\lambda_{3}\right)^{4}=0 .
$$

In other words, A has three distinct eigenvalues $\lambda_{1,2,3}$ of different algebraic multiplicity. Given that

$$
\operatorname{dim} \mathcal{N}\left(\boldsymbol{A}-\lambda_{2} \boldsymbol{I}\right)=2, \quad \operatorname{dim} \mathcal{N}\left(\boldsymbol{A}-\lambda_{3} \boldsymbol{I}\right)=2
$$

obtain all possible Jordan canonical forms for A. You have to be clear and precise. Explain your answer.

The dimension of the nullspace for each eigenvector determines the number of Jordan blocks for eigenvalues λ_{2} and λ_{3} :

- For eigenvalue λ_{1}, the only possible Jordan block is

$$
J_{\lambda_{1}}=\left[\lambda_{1}\right] .
$$

- For eigenvalue λ_{2}, the only possible Jordan block is $J_{\lambda_{2}}=\left[\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ since the geometric multiplicity is equal to the algebraic one, then there will be two Jordan blocks for λ_{2}. Since the total size of these two Jordan blocks is equal to 2 , then the only possible Jordan block form for λ_{2} is

$$
J_{\lambda_{2}}=\left[\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

- For eigenvalue λ_{3}, the geometric multiplicity is equal to 2 , hence there are two Jordan blocks with a total size of 4 . The possible combinations are hence

$$
\boldsymbol{J}_{\lambda_{2}}^{(1)}=\left[\begin{array}{cccc}
\lambda_{3} & 0 & 0 & 0 \\
0 & \lambda_{3} & 1 & 0 \\
0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & \lambda_{3}
\end{array}\right]
$$

or

$$
J_{\lambda_{2}}^{(2)}=\left[\begin{array}{cccc}
\lambda_{3} & 1 & 0 & 0 \\
0 & \lambda_{3} & 0 & 0 \\
0 & 0 & \lambda_{3} & 1 \\
0 & 0 & 0 & \lambda_{3}
\end{array}\right]
$$

Therefore, and given the problem description, there can only be two possible combinations of the Jordan form of A, given as follows:

$$
\boldsymbol{J}^{(1)}=\operatorname{blkdiag}\left(J_{\lambda_{1}}, \boldsymbol{J}_{\lambda_{2}}, J_{\lambda_{3}}^{(1)}\right)
$$

or

$$
\boldsymbol{J}^{(2)}=\operatorname{blkdiag}\left(J_{\lambda_{1}}, \boldsymbol{J}_{\lambda_{2}} \boldsymbol{J}_{\lambda_{3}}^{(2)}\right)
$$

(c) (10 points) Consider that

$$
A=\boldsymbol{u} \boldsymbol{v}^{\top}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right] .
$$

Note that A is a rank one matrix.
Derive $e^{A t}$ for any u and v and then compute $e^{A t}$ for the matrix given above and for $t=\frac{1}{\boldsymbol{v}^{\top} u}=\frac{1}{32}$.

If A is a rank- 1 matrix, we can write

$$
e^{\boldsymbol{A} t}=\boldsymbol{I}+\frac{\boldsymbol{A}}{\boldsymbol{v}^{\top} \boldsymbol{u}}\left[e^{\left(\boldsymbol{v}^{\top} \boldsymbol{u}\right) t}-1\right]
$$

Notice that

$$
\boldsymbol{v}^{\top} \boldsymbol{u}=1 \cdot 4+2 \cdot 5+3 \cdot 6=32
$$

hence

$$
e^{A t}=I_{3}+\frac{A}{\boldsymbol{v}^{\top} \boldsymbol{u}}\left[e^{\left(\boldsymbol{v}^{\top} u\right) t}-1\right]=I+\frac{A}{32}\left[e^{1}-1\right] \approx I+0.05 A
$$

(d) (10 points) Is the following system defined by

$$
y(t)=(u(t))^{1.1}+u(t+1)
$$

causal or non-causal? Linear or nonlinear? Time-invariant or time-varying? You have to prove your answers. A one-word answer is not enough.

The system is nonlinear due to the $(u(t))^{1.1}$ (which is a nonlinear function in terms of the input), causal because the output depends on future inputs, and time-invariant. You have to prove these results, though. :)
(e) (5 points) The transfer function matrix of the state space system

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t), \quad \boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
$$

can be written as

$$
\boldsymbol{H}(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}
$$

for any MIMO or SISO system. Find the transfer function $\boldsymbol{H}(s)$ when

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \boldsymbol{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \boldsymbol{D}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] .
$$

Your $\boldsymbol{H}(s)$ should be $\in \mathbb{R}^{1 \times 2}$

$$
\boldsymbol{H}(s)=\boldsymbol{C}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{2}{s-2} & 0
\end{array}\right] .
$$

2. (35 total points) The state-space representation of a dynamical system is given as follows:

$$
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
\end{aligned}
$$

with

$$
\boldsymbol{A}=\left[\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \boldsymbol{C}=\left[\begin{array}{ll}
2 & 1
\end{array}\right], \boldsymbol{x}_{0}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right], D=0 .
$$

(a) (5 points) By finding the eigenvalues, eigenvectors of the \boldsymbol{A} matrix, compute $e^{\boldsymbol{A t}}$ via the diagonal transformation. You have to clearly show your work.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]^{-1} \\
\Rightarrow e^{A t}=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0.5-0.5 e^{-2 t} \\
0 & e^{-2 t}
\end{array}\right] .
\end{gathered}
$$

(b) (5 points) Assume that the control input is $u(t)=0$, compute $\boldsymbol{x}(t)$ and $\boldsymbol{y}(t)$.

$$
\begin{gathered}
x(t)=e^{A t} x_{0}=\left[\begin{array}{cc}
1 & 0.5-0.5 e^{-2 t} \\
0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.5 e^{-2 t}-0.5 \\
3 e^{-2 t}
\end{array}\right] . \\
y(t)=\boldsymbol{C} x(t)=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{c}
-1.5 e^{-2 t}-0.5 \\
3 e^{-2 t}
\end{array}\right]=-1 .
\end{gathered}
$$

(c) (20 points) Assume that the input is $u(t)=1+2 e^{-2 t}$, compute $\boldsymbol{x}(t), y(t)$.

$$
\begin{gathered}
\boldsymbol{x}(t)=e^{\boldsymbol{A}\left(t-t_{0}\right)} \boldsymbol{x}_{t_{0}}+\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau=\left[\begin{array}{c}
-1.5 e^{-2 t}-0.5 \\
3 e^{-2 t}
\end{array}\right]+\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau \\
\int_{t_{0}}^{t} e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d \tau=\int_{t_{0}}^{t}\left[\begin{array}{cc}
1 & 0.5-0.5 e^{-2(t-\tau)} \\
0 & e^{-2(t-\tau)}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\left(1+2 e^{-2 \tau}\right) d \tau \\
=\left[\begin{array}{c}
0.75+0.5 t-0.75 e^{-2 t}+t e^{-2 t} \\
-0.5+0.5 e^{-2 t}-2 t e^{-2 t}
\end{array}\right]
\end{gathered}
$$

Hence,

$$
\begin{aligned}
\boldsymbol{x}(t)= & {\left[\begin{array}{c}
-1.5 e^{-2 t}-0.5 \\
3 e^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
0.75+0.5 t-0.75 e^{-2 t}+t e^{-2 t} \\
-0.5+0.5 e^{-2 t}-2 t e^{-2 t}
\end{array}\right] } \\
& =\left[\begin{array}{c}
0.25+0.5 t-2.25 e^{-2 t}+t e^{-2 t} \\
-0.5+3.5 e^{-2 t}-2 t e^{-2 t}
\end{array}\right]=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{aligned}
$$

and

$$
y(t)=\left[\begin{array}{ll}
2 & 1
\end{array}\right] x(t)=t-e^{-2 t}
$$

(d) (5 points) Given your answers to the previous question, compute $x(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$ as $t \rightarrow \infty$. Which state blows up? Also, find $y(\infty)$.

$$
x(\infty)=\left[\begin{array}{c}
\infty \\
-0.5
\end{array}\right]=\left[\begin{array}{l}
x_{1}(\infty) \\
x_{2}(\infty)
\end{array}\right], y(\infty)=\infty
$$

The first state blows up (this state corresponds to the unstable mode with eigenvalue $\lambda_{1}=0$) and the second state converges to -0.5 (this state corresponds to the stable mode with eigenvalue $\lambda_{2}=-2$.)
3. (20 total points) In this problem, we will study the equilibrium of Susceptible-InfectiousSusceptible (SIS) in epidemics-similar to what we discussed in class. The dynamics of a simplified SIS model can be written as

$$
\begin{align*}
\frac{d S}{d t} & =-\frac{\beta S I}{N(t)}+\gamma I \tag{1}\\
\frac{d I}{d t} & =\frac{\beta S I}{N(t)}-\gamma I \tag{2}
\end{align*}
$$

where $S(t)$ is the number of people that are susceptible at time t and $I(t)$ is the number of infected people at time t, where $N(t)$ is the total number of people which is a time-varying quantity.
Assume that the number of people is fixed, that is $S(t)+I(t)=N(t)$ where $N(t)$ is the timevarying population of the SIS dynamics.
(a) (10 points) Given the above assumption, reduce the above dynamical system from 2 states $(S(t), I(t))$ to a dynamic system with only one state $I(t)$. You should obtain something like

$$
\dot{I}(t)=f(I(t), \beta, N(t), \gamma)
$$

where $f(\cdot)$ is the function that you should determine.

First, we can substitute $S(t)=N(t)-I(t)$ into the second differential equation, we obtain

$$
\frac{d I}{d t}=\frac{\beta(N(t)-I(t)) I(t)}{N(t)}-\gamma I(t)=-\frac{\beta}{N(t)} I^{2}(t)+(\beta-\gamma) I(t)=f(I(t), \beta, N(t), \gamma)
$$

(b) (5 points) What is the non-trivial (different than zero) time-varying equilibrium of the system? In other words, what is $I_{e q}(t)$?

Setting

$$
f\left(I_{e q}(t), \beta, N(t), \gamma\right)=-\frac{\beta}{N(t)} I_{e q}^{2}(t)+(\beta-\gamma) I_{e q}(t)=0
$$

we obtain

$$
I_{e q}(t)=\frac{\beta-\gamma}{\beta} N(t)
$$

as the non-trivial time-varying equilibrium.
(c) (5 points) The linearized dynamics of $I(t)$ can be written as:

$$
\dot{I}_{l i n}(t)=\left.\frac{\partial f(t)}{\partial I(t)}\right|_{I(t)=I_{e q}(t)} \cdot I_{l i n}(t) .
$$

where $\left.\right|_{I(t)=I_{e q}(t)}$
means "evaluated at $I(t)=I_{e q}(t)$ ". In other words, the linearized dynamic system can be written as

$$
\dot{x}(t)=\alpha(t) \cdot x(t)
$$

where $x(t)$ is the linearized state $I_{l i n}(t)$, and $\alpha(t)=\left.\frac{\partial f(t)}{\partial I(t)}\right|_{I(t)=I_{e q}(t)}$. Analyze the stability of this equilibrium point and explain what happens as $t \rightarrow$ as any of these parameters $\beta, N(t), \gamma$ change.

Applying the linearization, we get

$$
\left.\frac{\partial f(t)}{\partial I(t)}\right|_{I(t)=I_{e q}(t)}=-2 \frac{\beta}{N(t)} I_{e q}(t)+(\beta-\gamma)=-2 \frac{\beta}{N(t)} \cdot \frac{\beta-\gamma}{\beta} N(t)+(\beta-\gamma)=\gamma-\beta
$$

Hence, we can write

$$
\dot{I}_{l i n}(t)=(\gamma-\beta) I_{l i n}(t)
$$

If $\gamma-\beta<0$, then the time-varying equilibrium point is a stable operating point. Otherwise if $\gamma-\beta>0$, the equilibrium point $I_{e q}(t)$ is an unstable operating point. Finally, if $\gamma=\beta$, the operating point yields a marginally stable system.

Does the stability of the linearized system depend on $N(t)$?

Interestingly, the equilibrium point $I_{e q}(t)$ does not depend on the time-varying quantity $N(t)$ which is the total time-varying population of susceptible and infected people.

