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ABSTRACT
The widespread use of smart mobile devices has resulted in a mas-
sive accumulation of trajectory data by service providers. The anal-
ysis of human trajectories, particularly semantic location infor-
mation, has opened up avenues for discovering common social
behavior and enhancing social connections, leading to a range of
applications such as friend recommendations and product sugges-
tions. However, the exponential growth of trajectory information
generated every day presents significant challenges for existing
trajectory analysis algorithms, which are no longer capable of de-
livering timely analysis results. To address this issue, we propose
a highly efficient algorithm that can recommend social commu-
nities for new users in real time by leveraging knowledge gained
from large-scale semantic trajectories. Specifically, we develop a
novel two-branch deep neural networkmodel that extracts semantic
meanings at different levels of granularity from human trajecto-
ries and uncovers the hidden relationship between trajectories and
social communities. We then utilize this model to perform instant
social community recommendations. Our experimental results have
demonstrated that our approach is not only significantly faster than
traditional trajectory analysis algorithms in terms of social commu-
nity recommendation, but also preserves high prediction accuracy
with F1-score above 97%.
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1 INTRODUCTION
As the Internet of Things continues to develop and society becomes
increasingly digitized, service providers are collecting more and
more human trajectory data through smart devices, smartphones,
and vehicles equipped with GPS. By analyzing human trajectories,
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particularly semantic location information, we are gaining a better
understanding of common social behavior, which has led to the
development of a variety of interesting applications such as friend
recommendations, topic recommendations, product recommenda-
tions, and location-based advertising. The foundation of all these
recommendations is to identify a person’s preferences in different
settings, which can be effectively achieved by identifying the social
communities a person belongs to. A social community is a group
of people who share common interests. For example, as illustrated
in Figure 1, Alice and Bob are both business travelers who enjoy
seafood; Alice, Bob, and Carl all work for IT companies; Daisy and
Ethan are tourists. People who are in different countries and have
different GPS trajectories may belong to the same social groups,
and a single person may also join multiple social groups. Thus,
identifying the potential social communities that a new user may
be interested in would be beneficial for both the user and the ser-
vice providers. In the past, such social community recommendation
was typically conducted based on the new user’s profile, which,
however, was usually not very accurate as most users are not will-
ing to spend time filling out lengthy questionnaires to report all
of their preferences. Thus, recent research efforts [5, 20, 26, 28]
have focused on using semantic trajectory information to automate
social community identification.

A semantic trajectory differs from traditional coordinate-based
trajectories. While coordinate-based trajectories simply record the
exact locations a person has visited, semantic trajectories record the
types of places a person has visited. What is fascinating is that peo-
ple who have no intersection of their coordinate-based trajectories
may still possess similar social behavior patterns. Take Alice and
Bob, for example, who live in two different cities and have nothing
in common in terms of their daily coordinate-based trajectories.
However, from their semantic trajectories, we can infer that both
of them may share an interest in Italian restaurants, as they have
frequently visited them. This demonstrates that analyzing semantic
trajectories is much more useful for inferring one’s preferences and
interests than traditional coordinate-based trajectories. With the
increasing prevalence of smart devices and GPS, semantic trajec-
tory analysis has the potential to unlock a wealth of information
about human behavior and preferences.

Social community recommendation based on semantic trajec-
tory analysis is a very challenging research question. Despite the
potential benefits of this approach, there are few studies in this field
[5, 20, 26, 28], as it presents a myriad of challenges that are yet to
be addressed. With the rapid growth of trajectory data generated
daily, existing trajectory analysis algorithms are struggling to keep
up with the pace required to provide timely analysis results for
large-scale datasets. Most existing approaches rely on clustering
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Figure 1: Social Community Recommendations Based on Semantic Trajectories

similar semantic trajectories into social groups, which is a daunt-
ing task given the sheer volume of trajectory data. As a result,
identifying a new user’s social groups requires comparing their
trajectory with a massive number of existing trajectories, which
is extremely time-consuming. Even the most recent distributed
Spark-based algorithm [5] requires a whopping 6.3 hours for a sin-
gle user social community recommendation on a dataset with 1
million trajectories. Addressing these challenges and developing
more efficient algorithms for social community recommendation
based on semantic trajectory analysis represents an exciting and
important research direction.

We have developed a novel solution to tackle the aforementioned
ever-growing scalability issue that accompanies the proliferation
of newly connected data. Our approach is capable of recommend-
ing social communities for new users in real time, irrespective of
the semantic trajectory dataset’s size. Our strategy is a significant
departure from traditional approaches that rely heavily on trajec-
tory comparisons. Instead, we have harnessed the power of deep
learning to construct a sustainable model that captures the hidden
relationships between semantic trajectories and their correspond-
ing social communities.

Our approach is speedy, requiring a mere 0.3 milliseconds to
complete recommendations. To accomplish this, we designed a two-
branch deep neural network, known as the Gated Recurrent Unit
with K-Sequential Shingling (GRU-KSS), which extracts multi-level
semantic meanings from semantic trajectories, paving the way for
community recommendations. To the best of our knowledge, this is
the first instance where a deep neural network model is proposed
to handle social community recommendation. We summarize our
contributions as follows:

• Our proposed GRU-KSS network represents a new way to-
wards understanding the intricate relationship between in-
put semantic trajectories and output social communities. We
have developed a novel encoding method that efficiently con-
verts semantic trajectories into effective vector inputs for the

deep neural network. Furthermore, our two-branch structure
captures and combines the semantic similarity at different
granularity, resulting in a sophisticated model capable of
revealing previously unrecognized connections between se-
mantic trajectories and social communities.

• Our model is also dynamic and can handle the situations
where new social communities are added. This flexibility
allows our model to adapt to the ever-evolving landscape of
social communities, ensuring that users are always receiving
the most up-to-date and relevant recommendations.

• Our approach delivers incredible scalability, efficiency, and
accuracy. Unlike traditional approaches that suffer from pro-
cessing delays that increase exponentially with larger tra-
jectory datasets, our approach ensures constant processing
times for social community predictions. Furthermore, our
model outperforms existing deep neural network models,
achieving an impressive accuracy rate of 97% as confirmed
by extensive experimental studies

The remainder of the paper is organized as follows. Section 2
reviews the related work. Section 3 presents the problem statement.
Section 4 presents our community recommendation algorithms. Sec-
tion 5 reports the experimental results. Finally, Section 6 concludes
the paper and outlines future research directions.

2 RELATEDWORK
As our work is related to both trajectory similarity analysis and
social community recommendation, we review these two lines of
works in the following.

2.1 Trajectory Similarity Analysis
There are two main representations of trajectories: (i) coordinate-
based trajectories and (ii) semantic trajectories. As our work falls
under the second category, we will briefly review the coordinate-
based trajectory analysis and then focus our discussion on semantic
trajectory analysis.
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A coordinate-based trajectory is a sequence of recorded GPS
locations of a person, while a semantic trajectory is a sequence of
place names visited by a person. There have been a large body of
works on analyzing and clustering coordinate-based trajectories
[1, 10, 23, 27, 29, 36, 37]. The similarity between coordiante-based
trajectories are typically measured using Euclidean distance [17, 18]
or road network distance [15, 16], along with some other types of
measures such as Hausdorff and Frechet distance, angular metric
and edit distance [1, 8, 10, 27].

Unlike coordinate-based trajectory analysis which is focused
on location proximity and bound by their geographic regions (e.g.,
within same cities), semantic trajectory analysis opens up oppor-
tunities to explore similar social behavior patterns in trajectories
that may or may not be geographically similar and even across the
geographic boundaries. As illustrated in Figure 1, similar coordinate-
based trajectories may have totally different underlying semantic
meanings, whereas dissimilar coordinate-based trajectories may ac-
tually exhibit similar social behavior patterns. Various approaches
have been proposed to identify similarity between semantic trajec-
tories. As for semantic trajectories, the commonly used similarity
measure is the longest common subsequence. Zhang et al. [35] and
Choi et al. [12] propose mining algorithms to detect sequential pat-
terns in semantic trajectories, which are able to group users who
visited similar types of places rather than just nearby locations.
Wan et al. [32] take into account both coordinate-based distance
and semantic-based distance, and define a new concept of semantic-
geographic similar trajectories. Celik and Dokuz [7] introduces a
new notion of socially important locations by integrating the fre-
quency of the locations visited on social media platforms. Gao et al.
[13] employ clustering approaches to identify regions of interests
and then represent trajectories in multi-resolutions. Majority of
existingworks on semantic trajectory similarity analysis are central-
ized approaches which are not scalable to deal with the exponential
collection of data. Therefore, the most recent work started looking
into distributed algorithms. For example, Chen et al. [9] propose to
group trajectories based on semantic meanings first and then spatial
proximity. As a result, they will obtain smaller datasets to process
the trajectory comparison in parallel. However, this distributed
algorithm is not suitable for identifying semantically similar trajec-
tories which do not reside in same geographic region as shown in
our examples. Most recently, Cai et al. [5] propose the AnotherMe
algorithm which leverages the Spark platform to dramatically im-
prove the efficiency of trajectory similarity calculation compared to
the previously centralized approaches. However, given a new user,
these distributed algorithms still need to compare the new user’s
trajectory against all the existing users, which could be millions
or billions of users, to find out their similarity, and hence they are
inevitably computational expensive. Our deep-learning-based ap-
proach is much more resilient to the growth of the data collection
and has the advantage of providing instant response in real time
by simply feeding the new user’s information through the trained
network. We will demonstrate the superiority of our approach later
in the experiments.

2.2 Social Community Recommendation
Social community recommendation or friend recommendation is a
popular feature on the fast growing online social community. Rec-
ommendations can be based on various types of user information
such as users’ profiles [31] and users’ trajectories [2, 5, 6, 26]. As
our work is using trajectories for recommendation, we review the
related work as follows.

Recently, researchers have begun to leverage the deep learning
models for trajectory classification to make social community rec-
ommendations. Many of them utilize Rrecurrent Neural Networks
(RNN) [3, 14, 19, 30, 34]. Besides RNN-based approaches, Liu et al.
[25] develop a GRU-based trajectory classifier by introducing an
additional temporal gate to better capture the spatial and temporal
information in trajectories. Kontopoulos et al. [21, 22] convert the
coordinate-based trajectories into images and then employ Convolu-
tional Neural Networks (CNN) to classify the trajectories. However,
as later shown in our experiments, these RNN, GRU or CNN based
models all have lower F1 score than our approach when applied
to semantic trajectories. This is because these existing approaches
are mainly for coordinate-based trajectories and have not taken
into considerations of non-contiguous transitions of locations in
semantic trajectories. Some recent works [4, 20, 28] consider both
semantic and geographic similarity between trajectories for classifi-
cation. However, these approaches are not suitable for our scenarios
where users with totally different coordinate-based trajectories may
still be grouped into the same social community if their semantic
trajectories are similar.

3 PROBLEM STATEMENT
In this section, we formally define the social community identi-
fication problem. As we leverage semantic trajectories to detect
social communities, we first introduce the common definition of
the semantic trajectory [5].

Definition 3.1. (Semantic Trajectory) A semantic trajectory of a
user 𝑢 is in the form of 𝑇𝑢=[𝑙𝑜𝑐1 → 𝑙𝑜𝑐2 → ... → 𝑙𝑜𝑐𝑛], where 𝑙𝑜𝑐𝑖
(1 ≤ 𝑖 ≤ 𝑛) denotes the name of the place where user 𝑢 stayed for
more than 𝜏 time (a time parameter used to distinguish passing points
from stay points), and the arrows indicate the visiting order.

The following are some examples of semantic trajectories.
𝑇𝐴𝑙𝑖𝑐𝑒 = [Bridge Hotel→Sydney Station → Google Australia →

Wharf Seafood→Bridge Hotel].
𝑇𝐵𝑜𝑏 = [Courtyard→ Oracle → Lobster Chef →Courtyard].
𝑇𝐶𝑎𝑟𝑙 = [Doolittle Apartment→ Oracle→ Doolittle Apartment].
We adopt the same definition of similarity between a pair of

semantic trajectories as that in the most recent work [5].

Definition 3.2. (Semantic Trajectory Similarity) Given a pair of
semantic trajectories 𝑇𝑢1 and 𝑇𝑢2 , the semantic trajectory similarity
between them is calculated as follows:

𝑆𝑇 (𝑇𝑢1 ,𝑇𝑢2 ) =
∑𝑛
𝑖=1 [𝑤𝑖 · 𝑆 (𝑇 𝑖

𝑢1 ,𝑇
𝑖
𝑢2 )],

where 𝑇 𝑖
𝑢1 and 𝑇

𝑖
𝑢2 represents the trajectory location representa-

tion at level 𝑖 in a semantic forest, 𝑤𝑖 is the corresponding weight
with

∑𝑛
𝑖=1𝑤𝑖 = 1, and 𝑆 (𝑇 𝑖

𝑢1 ,𝑇
𝑖
𝑢2 ) denote the maximum matching

subsequence of location representations at level 𝑖 .

The semantic forest used in the above definition is a hierarchical
structure that organizes location information according to their



SSTD, 23-25 August, 2023, Calgary, Alberta, Canada Chaoquan Cai, Wei Jiang, and Dan Lin

semantic relationship. The root of each tree corresponds to the
highest level of abstraction of a location, such as transportation,
entertainment, health, etc. The lower the level in the hierarchy,
the more specific category the location belongs to. For example,
the leaf level of the tree stores the exact address of each location;
the parent of the leaf level stores the type of the locations such as
bus station, 3-star hotel, children hospital. The number of levels in
the semantic forest is adjustable based on the specific application
domain, and it is treated as background knowledge for the seman-
tic trajectory comparison. For example, given the semantic forest
shown in Figure 2, the 2nd level representation of the above three
example trajectories are the following.

𝑇 2
𝐴𝑙𝑖𝑐𝑒

= [3-star Hotel→Subway Station→ IT Company→ Seafood
Restaurant→3-star Hotel].

𝑇 2
𝐵𝑜𝑏

= [3-star Hotel→ IT Company → Seafood Restaurant →3-
star Hotel].

𝑇 2
𝐶𝑎𝑟𝑙

= [Apartment→ IT Company→ Apartment].

The adoption of such hierarchical representation of a trajectory
allow us to capture the in-depth semantic similarity since people
who did not visit the exactly same places may still share common-
ality of their travel patterns. From the example, we can observe
that although Alice and Bob are in two different countries, their
trajectory representations at the 2nd level of the semantic tree ex-
hibit high level of similarities and we may even speculate that they
were likely on business trips to IT companies and both preferred
seafood. Also, the similarity score between Alice and Bob is likely
higher than that between Bob and Carl. Even though Bob and Carl
visited the same company, the maximum common subsequences in
each level of their trajectories’ representations are as short as one.

Given the above definition of semantic trajectory similarity, we
are now ready to define the notion of social community. The goal
of finding a social community is to help people connect with other
who may share common interests with them. In this work, we
achieve this by identifying people who are highly similar to each
other in terms of their semantic trajectories. The formal definition
of the social community is as follows.

Definition 3.3. (Social Community) Given a set of semantic tra-
jectories SC= 𝑇𝑢1 , 𝑇𝑢2 , ... 𝑇𝑢𝑘 , they form a social community if any of
two trajectories have the semantic similarity score above a threshold
𝜌 , i.e., ∀𝑇𝑢𝑖 ,𝑇𝑢 𝑗

∈ 𝑆𝐶 , 𝑆𝑇 (𝑇𝑢𝑖 ,𝑇𝑢 𝑗
) ≥ 𝜌 .

It is worth noting that a person may belong to multiple social
communities. For example, {Alice, Bob, Carl} could be in the same
IT community; {Alice, Bob} may also be in the seafood lover com-
munity.

4 OUR ALGORITHM
As discussed earlier, recommending social communities for a user
using traditional approaches will require the calculation of the mu-
tual semantic similarity between the user and all the other users
on the social network. Considering the billions of users on social
network nowadays, this task is an undoubtedly computational ex-
pensive. Thus, the goal of our work is to dramatically improve the
efficiency of social community recommendation via deep learning
techniques. Our key idea is to build a sophisticated deep neural

network that is capable of modeling the convoluted relationship
between semantic trajectories and social communities. Once the
model is constructed, it will take the semantic trajectories of a user
as input, and quickly predict the social communities that the user
may be interested in joining.

There are two major challenges to conquer in the model design.
First, we need an effective mapping algorithm which can convert
the multi-level representations of a semantic trajectory into a single
embedding that can be processed by a neural network. Second, we
need to figure out appropriate types of layers, the number and size
of the layers that best capture the meaning of semantic trajectories
and yield high prediction accuracy. In what follows, we elaborate
the detailed algorithms with respect to these two aspects.

4.1 Generation of Trajectory Embedding
In the raw dataset, a semantic trajectory is a sequence of place
names. We convert each semantic trajectory into two types of
embeddings: (i) hierarchical embedding; (ii) k-sequential shingle
embedding. The hierarchical embedding corresponds to the rep-
resentations of the semantic trajectory at different levels of the
semantic forest. The k-sequential shingle embedding aims to cap-
ture the non-contiguous transition relationship among places. The
detailed algorithms to generating the embeddings are the following.

There are four steps to generate the hierarchical embedding.
First, we create a vocabulary of all the location names in the en-
tire semantic forest as shown in Figure 2, and assign each name a
unique integer index. Note that even though a location name may
consist of multiple words, the name of the location is considered as
a whole when assigning the integer index. This is because when
we compare addresses or types of the locations, we are matching
the entire addresses and types. Then, for each input semantic tra-
jectory, we map the trajectory to all the levels in the semantic
forest, and convert the locations to the corresponding indexes in
the vocabulary. Next, we add a special symbol ′𝑂𝑂𝑉 ′ to the end of
each trajectory to make its length equal to the maximum possible
length (denoted as 𝑁 ) of trajectories being considered. Finally, we
concatenate the 𝑁 -dimensional index representations at all the 𝐿
semantic levels into a (𝑁 × 𝐿)-dimensional vector to form the hier-
archical embedding. The format of the hierarchical embedding of a
trajectory after multi-level semantic mapping and vectorization is

as follows: 𝐸ℎ =



𝑉 1

𝑉 2

.

.

.

𝑉 𝐿


where 𝑉 𝑙 = [𝑣𝑙1, 𝑣

𝑙
2, ..., 𝑣

𝑙
𝑁
], 1 ≤ 𝑙 ≤ 𝐿.

Reconsidering the example of Alice’s trajectory, her correspond-
ing hierarchical encoding is shown in Figure 3 calculated based on
the semantic forest in Figure 2.

The hierarchical embedding preserves the contiguous transition
relationship between the locations that are next to each other in a
trajectory. For example, Alice transited from her hotel to a subway
station, which is a contiguous transition. Alice later visited an IT
company. Her transition from her hotel to the IT company is an
example of non-contiguous transition. Observing Bob’s trajectory,
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Figure 2: An Example of the Semantic Forest

Figure 3: The Hierarchical Encoding of Alice’s Trajectory

wemay notice that Bob has a contiguous transition from his hotel to
an IT company. If we only compare the hierarchical embeddings of
Alice’s and Bob’s trajectories, we may miss the matching between
contiguous transitions and non-contiguous transitions. Therefore,
we introduce the k-sequential shingle embedding. A k-sequential
shingle represents a combination of 𝑘 locations in the trajectory.
The locations in the k-sequential shingle are in the same order
as that in the original trajectory but they may be contiguous or
non-contiguous. Its formal definition is below.

Definition 4.1. (K-sequential Shingle) Given a trajectory 𝑇=[𝑙𝑜𝑐1
→ 𝑙𝑜𝑐2 → ... → 𝑙𝑜𝑐𝑛], its k-sequential shingle is a set of𝑚 distinct
shingles 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑚}, where each shingle is formed by 𝑘 con-
tiguous or non-contiguous locations in 𝑇 in the same order as they
occur in the trajectory, i.e., 𝑔𝑖=[loc𝑖1 →loc𝑖2 ...→loc𝑖𝑘 ], and 1 ≤ 𝑖 ≤ 𝑚,
𝑚 ≤

(𝑛
𝑘

)
.

Given Alice’s and Bob’s trajectory representations at the 2nd
level of the semantic forest, we may obtain the following two sets of
3-sequential shingles for them. From these k-sequential shingles, we
can observe several exact matches:𝑔𝐴2 = 𝑔𝐵1,𝑔𝐴3 = 𝑔𝐵2,𝑔𝐴4 = 𝑔𝐵3,
𝑔𝐴5 = 𝑔𝐵4. These indicate that Alice and Bob have highly similar
moving patterns.

𝐺𝐴𝑙𝑖𝑐𝑒 = {𝑔𝐴1, 𝑔𝐴2, 𝑔𝐴3, ..., 𝑔𝐴10}
𝑔𝐴1= ⟨3-star hotel, subway station, IT company⟩
𝑔𝐴2= ⟨3-star hotel, IT company, seafood restaurant⟩
𝑔𝐴3 = ⟨3-star hotel, IT company, 3-star hotel⟩
𝑔𝐴4= ⟨3-star hotel, seafood restaurant, 3-star hotel⟩
𝑔𝐴5 = ⟨IT company, seafood restaurant, 3-star hotel⟩
...

𝐺𝐵𝑜𝑏 = {𝑔𝐵1, 𝑔𝐵2, 𝑔𝐵3, 𝑔𝐵4}
𝑔𝐵1= ⟨3-star hotel, IT company, seafood restaurant⟩
𝑔𝐵2 = ⟨3-star hotel, IT company, 3-star hotel⟩
𝑔𝐵3 = ⟨3-star hotel, seafood restaurant, 3-star hotel⟩
𝑔𝐵4 = ⟨IT company, seafood restaurant, 3-star hotel⟩
Actually for each semantic level of the trajectory representation,

there is a corresponding set of k-sequential shingles. If we con-
sider the shingles at all the semantic levels, it would be inevitably
computational and storage expensive. As a tradeoff, we only gen-
erate the shingles at the second level of the semantic forest. This
level contains fewer location categories and hence helps reduce
the total number of shingles to be calculated for each trajectory,
while this level still captures high level similarity of trajectories. To
generate embeddings for the k-sequential shingles at the second
level, we first create a shingle vocabulary for location categories
at this level. Specifically, we generate all possible combinations of
k-sequential shingles using the keywords at this semantic level,
and assign a unique integer index to each shingle. Let 𝑀 denote
the total number of location categories in this level. The total num-
ber of combinations k-sequential shingles is𝑀𝑘 . In the real world
scenario, the number of location categories at high semantic level
would not be too large. Assuming there are 100 location categories,
the size of the 3-sequential-shingle vocabulary will have 1 million
integers which can be easily retrieved with the aid of a hash map
to generate embeddings. Given the maximum trajectory length of
𝑁 , the number of distinct shingles per trajectory will not exceed(𝑁
𝑘

)
. For example, when a trajectory consists of 10 location cate-

gories, the total number of 3-sequential shingle for this trajectory
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Figure 4: Overview of the Proposed GRU-KSS Model

is
(10
3
)
=120. That means the corresponding 3-sequential shingle

embedding will be a 120-dimensional vector of shingle indexes. As
for a single trajectory to include 10 different location categories is
already quite rare, we use this as the upper bound for padding the
shingle embeddings. Specifically, if a trajectory’s shingle embed-
ding contains less than 120 indexes, we will add special symbols to
the end of the embedding to make it 120-dimensional. The format
of the k-sequential-shingle embedding of a trajectory is as follows:
𝐸𝑠 = [𝐼1, 𝐼2, ..., 𝐼𝑞], where 𝑞 is the maximum number of possible
k-sequential shingles in a trajectory.

4.2 GRU-KSS Model
The goal of our model is to recommend social communities for users
by analyzing their semantic trajectories. As a user may belong to
multiple social communities which could be correlated to different
portions of his/her trajectory, we are dealing with a multi-class
classification problem. As the transition order of places being visited
may indicate different types of user behavior or preferences, our
model is expected to process data sequences. Taking into account
these factors, we develop a Recurrent Neural Network (RNN) based
model as shown in Figure4.

Ourmodel is called GRU-KSS (Gated Recurrent Units &K-Sequential
Shingling) model which consists of two branches. One branch aims
to analyze contiguous location transitions in the semantic trajec-
tories and it leverages the GRU [11] to handle the hierarchical
embeddings of semantic trajectories. The other branch aims to an-
alyze the non-contiguous location transition information and it
takes the k-sequential-shingle embeddings as input. We elaborate
the mechanism in each branch as follows.

GRU is a gating mechanism in recurrent neural networks. The
GRU is like a long short-term memory (LSTM) with a forget gate,
but has fewer parameters than LSTM and also perform better
than LSTM for our problem. In our model, the GRU component

is comprised of one layer with 256 nodes. It takes the hierarchi-
cal embedding of a semantic trajectory as input and produces a
256-dimensional feature vector denoted as 𝑓𝑐 . Specifically, given a
(𝑁 × 𝐿)-dimensional hierarchical embedding 𝐸ℎ=[𝑒1ℎ , 𝑒

2
ℎ
, ..., 𝑒𝑁𝐿

ℎ
],

each node at the first hidden layer will compute the following, and
the nodes at the later layers will conduct similar calculation by
taking the input from the previous layer.

𝑧𝑡 = 𝜎 (𝑤𝑧𝑒
𝑖
ℎ
+ 𝑢𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎 (𝑤𝑟𝑒
𝑖
ℎ
+ 𝑢𝑟ℎ𝑡−1 + 𝑏𝑟 )

ℎ̃𝑡 = tanh(𝑤ℎ𝑒
𝑖
ℎ
+ 𝑢ℎ (ℎ𝑡−1 ⊙ 𝑟𝑡 ))

ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ̃𝑡 + 𝑧𝑡 ⊙ ℎ𝑡−1

On the other side is the KSS branch which is a Multi-layer Per-
ceptron (MLP). It contains two fully connected layers with 256
number of nodes per layer. It is fed with the k-sequential-shingle
embedding and outputs a 256-dimensional feature vector denoted
as 𝑓𝑛 .

Next, we concatenate the obtained two feature vectors 𝑓𝑐 and 𝑓𝑛
and feed it to two fully connected layers. The intuition is to merge
the features obtained from the contiguous location representation
and the non-contiguous location representation to better character-
ize the user’s behavior. In particular, the first fully connected layer
contains 1024 nodes. The second fully connected layer contains the
number of nodes equal to the maximum number of possible social
communities in our experiments.

As we are predicting multiple social communities for each user,
we apply the Sigmod activation function to produce the probability
of each social community that a user may belong to. To measure the
correctness of the prediction, we adopt the Binary Cross Entropy
shown in Equation 1, where 𝐶 is the total number of social com-
munities, 𝑝 (𝑦𝑖 ) denotes the predicted probability of the 𝑖𝑡ℎ social
community that the user may be interested in, and 𝑦𝑖 is the true
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label which indicates whether the user really belongs to this social
community. The true label 𝑦𝑖 is set to 1 if the user is in the 𝑖𝑡ℎ
community.

𝐿𝑜𝑠𝑠 = − 1
𝐶

𝐶∑︁
1
(𝑦𝑖 log 𝑝 (𝑦𝑖 )) + ((1 − 𝑦𝑖 ) log 𝑝 (1 − 𝑦𝑖 )) (1)

5 EXPERIMENTAL STUDIES
Our GRU-KSS model is implemented by Keras and ran on NVIDIA
GeForce RTX 2060 GPU. Our computer has 12 CPUs with Intel
Core i7-9750H CPU(2.60GHz), 64G of memory and 1T disk space
available. We compare our approach with a variety of existing
algorithms as elaborated in the following. As we are predicting
multiple social communities for each user, all of the models contain
an output layer which has the number of nodes equivalent to the
total number of social communities (denoted 𝑁𝑐 ) and uses the
Sigmoid activation function at the end. Unlessmentioned, otherwise
the ReLu activation function is used for middle layers.

• MLP (Multi-Layer Perceptron): This is a simple fully-connected
network that consists of two hidden layers and each hidden
layer has 256 nodes. It takes only the hierarchical embedding
as introduced in Section 4.1.

• RNN (Recurrent Neural Network): This is a vanilla RNNwith
a hidden layer that has 256 nodes and an output layer with
𝑁𝑐 nodes. It also takes only the hierarchical embedding that
represents contiguous location transition.

• RNN-KSS: This is a variant of our GRU-KSS model. We re-
place the GRU with the above vanilla RNN and keep the KSS
branch the same.

• LSTM (Long Short-Term Memory): This LSTM has a hid-
den layer with 256 nodes. It takes only the one-dimensional
hierarchical embeddings.

• LSTM-KSS: This is another variant of our model, whereby
we replace the GRU with the LSTM.

• GRU (Gated Recurrent Unit): This GRU contains a single hid-
den layer with 256 units, and its input is the one-dimensional
hierarchical embeddings.

• VGG16-1D: We modify the original VGG16 model by re-
placing its 2-dimensional convolutional kernel with a 1-
dimensional convolutional kernel to take the one-dimensional
hierarchical embedding. The stride is set to 1 and the size of
kernel is 3.

• VGG16-2D: In this model, we turn the one-dimensional hier-
archical embedding to a matrix to match the input format
of the VGG16-2D. The stride is also set to 1 and the size of
kernel is 3.

• VGG19-1D: Similar to the VGG16-1D, we modify the input
layer in this model to take 1-dimensional hierarchical em-
bedding.

• VGG19-2D: This model takes the same format of input as
VGG16-2D.

• ResNet16-1D: This is not a standard ResNet network. In or-
der to compare with the VGG network, we keep the main
network structure the same as VGG16-1D and add skip con-
nections between adjacent blocks in the VGG.

• ResNet16-2D: This is a variant of VGG16-2D but with skip
connections.

• ResNet19-1D: This is a variant of VGG19-1D but with skip
connections.

• ResNet19-2D: This is a variant of VGG19-2D but with skip
connections.

In the experiments, we adopt both synthetic and real datasets.
The synthetic dataset has 1 million trajectories. The length of each
trajectory, i.e., the number of semantic locations visited, is set to
5 to 10 in order to match the common people’s daily behavior
patterns. The default semantic forest has 3 levels, including 10,000
semantic locations at the lowest level, 30 and 10 categories on the
2nd and root levels, respectively. As for the real dataset, we select
the current largest real trajectory dataset – GeoLife [36, 38, 39].
The GeoLife dataset has 17,621 trajectories generated by 182 users.
The trajectories in GeoLife are represented as a sequence of GPS
coordinates. We convert these coordinates to semantic locations
following the same steps as that in [5]. First, we detect stay points
in the GPS trajectories based on the algorithm in [24, 33]. The
stay points are the places where a person lingered for a period of
time. Then we map the stay points to semantic location names to
obtain corresponding semantic trajectories. Finally, we assign each
converted semantic trajectory a new ID. For each dataset, we use
90% for training and 10% for testing.

Moreover, to be consistent with the latest distributed algorithm,
AnotherMe, which is used as the baseline for comparison, we adopt
the same setting for the selection of sequential shingles whereby
3-Sequential Shingling is used.

Let 𝐶 denote the total possible number of social communities.
We treat this multi-label classification task as a 𝐶 binary classifi-
cation task. The social communities generated by the traditional
non-deep-learning approach [5] are used as the ground truth for
comparison. The performance of all the models is evaluated using
five commonly adopted metrics: CPU time, accuracy, precision, re-
call and 𝐹1 score as defined below, where 𝑇𝑃𝑖 , 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , and 𝐹𝑁𝑖

denote the total number of true positives, true negatives, false pos-
itives, false negatives of the 𝑖𝑡ℎ user, respectively. Each model is
constructed 10 times on each training dataset. Each data point on
the experimental figures represents the average performance of the
10 rounds.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

𝑇𝑃𝑖 +𝑇𝑁𝑖

𝐹𝑃𝑖 + 𝐹𝑁𝑖 +𝑇𝑃𝑖 +𝑇𝑁𝑖
(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑇𝑃𝑖

𝐹𝑃𝑖 +𝑇𝑃𝑖
(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
1
𝑛

𝑛∑︁
𝑖=1

𝑇𝑃𝑖

𝐹𝑁𝑖 +𝑇𝑃𝑖
(4)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

5.1 Comparison with Distributed Trajectory
Analysis Algorithms

In the first round of experiments, we compare the performance of
our deep-learning-based approach with the recent semantic trajec-
tory analysis algorithm called AnotherMe [5] by varying the total
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Figure 5: Training Time Comparison Figure 6: Prediction Time Comparison Figure 7: F1 Score Comparison

number of trajectories from 200K to 1M in the synthetic dataset. Re-
call that AnotherMe claims to be the up-to-date most efficient algo-
rithm as it leverages Spark to conduct parallel trajectory similarity
analysis and then clusters similar trajectories to form social com-
munities. Figure 5 shows the construction time of the AnotherMe
approach and the training time of our GRU-KSS model. Observe
that the construction time of the AnotherMe approach increases
rapidly with the growth of the total number of trajectories, and
quickly surpasses the training time of the GRU-KSS model. Specif-
ically, for the 1M trajectory dataset, our GRU-KSS model is more
than 3 times faster than the AnotherMe approach.

Next, we examine the efficiency when using these two algo-
rithms to predict social communities for new users. As shown in
Figure 6, our GRU-KSS model significantly outperforms the existing
distributed algorithm, i.e., AnotherMe. Our model outputs the social
community recommendation less than a millisecond whereas the
AnotherMe approach could take hours for a single recommendation.
This is because given a new user’s trajectory, AnotherMe needs
to calculate the similarity between the new trajectory with all the
existing trajectories to find the social communities that contain
all the trajectories with similarity scores above a threshold. Such
comparisons are extremely time consuming especially when the
total number of trajectories increases. As for our GRU-KSS model,
once it is constructed, the social community prediction is highly
efficient by feeding the new trajectory through the model once.

To further validate the efficacy of our model, we also check the
prediction accuracy by comparing the output social communities
from our model and the AnotherMe algorithm. The social commu-
nities found by the AnotherMe algorithm are treated as ground
truth. Figure 7 reports the F1-score of our model. Observe that the
F1-score of our model is above 97% in all cases, which indicates the
high prediction accuracy and recall of our model.

5.2 Comparisons with Existing Deep-Learning
Models

After observing the dramatic prediction time reduction of our deep-
learning model against distributed algorithms, we are interested in
finding out how other existing deep-learning models perform in
the same settings.

First, we evaluate the effect of our proposed hierarchical en-
coding when comparing with various deep learning models. Table
1 shows the results on 1M synthetic trajectories when the input
to our model is hierarchical encoding whereas the input to other

Table 1: Results of Different Models on 1M Synthetic Trajec-
tories without Hierarchical Encodings

Model Accuracy Precision Recall F1 Score
RNN 0.9768 0.0807 0.1618 0.1077
LSTM 0.9823 0.1887 0.4044 0.2573
GRU 0.9814 0.2098 0.4050 0.2764
VGG16-1D 0.9834 0.2706 0.5430 0.3612
VGG19-1D 0.9836 0.2599 0.4781 0.3368
ResNet16-1D 0.9819 0.2801 0.4530 0.3461
ResNet19-1D 0.9833 0.2448 0.4891 0.3263
GRU-KSS 0.9993 0.9676 0.9804 0.9740

Table 2: Results of Different Models on 1M Synthetic Trajec-
tories with Hierarchical Encodings

Model Accuracy Precision Recall F1 Score
MLP 0.9906 0.7028 0.8350 0.7632
RNN 0.9850 0.3233 0.7035 0.4430
RNN-KSS 0.9854 0.4423 0.7860 0.5661
LSTM 0.9976 0.9328 0.9515 0.9421
LSTM-KSS 0.9984 0.9572 0.9635 0.9604
GRU 0.9981 0.9527 0.9539 0.9533
GRU-KSS 0.9993 0.9676 0.9804 0.9740
VGG16-1D 0.9965 0.8879 0.9194 0.9034
VGG16-2D 0.9952 0.8603 0.8770 0.8686
VGG19-1D 0.9952 0.8578 0.8779 0.8677
VGG19-2D 0.9973 0.9185 0.9354 0.9269
ResNet16-1D 0.9969 0.9112 0.9213 0.9162
ResNet16-2D 0.9964 0.8795 0.9201 0.8994
ResNet19-1D 0.9972 0.9110 0.9357 0.9232
ResNet19-2D 0.9967 0.8993 0.9221 0.9105

deep learning models is simply one level of encoding. Observe that
existing models that take the single-level encoding of trajectories
yield very low precision, recall and F1 scores. Our model signifi-
cantly outperforms the existing models with the aid of the proposed
hierarchical encoding.

After observing the benefits of the hierarchical encoding on our
model, we are interested in investigating whether the hierarchical
encoding could help improve other existing models. Table 2 shows
the comparison results between our GRU-KSS model and 14 other
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Figure 8: Training Time on 1M Synthetic Trajectories with
Hierarchical Encodings

Table 3: Results of Different Models on Real Dataset with
Hierarchical Encodings

Model Accuracy Precision Recall F1 Score
MLP 0.9948 0.6088 0.8436 0.7072
RNN 0.9921 0.4313 0.6932 0.5318
RNN-KSS 0.9945 0.5686 0.8532 0.6824
LSTM 0.9983 0.9250 0.9505 0.9376
LSTM-KSS 0.9988 0.9461 0.9732 0.9595
GRU 0.9979 0.9456 0.9525 0.9490
GRU-KSS 0.9988 0.9690 0.9749 0.9719
ResNet16-1D 0.9976 0.8366 0.9218 0.8771
ResNet16-2D 0.9977 0.8368 0.9355 0.8834
ResNet19-1D 0.9978 0.9256 0.9543 0.9397
ResNet19-2D 0.9983 0.8963 0.9381 0.9167
VGG16-1D 0.9966 0.7761 0.8833 0.8262
VGG16-2D 0.9967 0.7789 0.8929 0.8320
VGG19-1D 0.9975 0.8181 0.9276 0.8694
VGG19-2D 0.9979 0.8627 0.9251 0.8928

models (described in the experimental setting) on the synthetic
dataset with 1 million trajectories. This time, all the models take
the same hierarchical encodings of trajectories. Observe that our
GRU-KSS model still performs the best in terms all the four metrics.
Specifically, the F1 score of GRU-KSS is above 97%, which indicates
the high prediction accuracy achieved by our model. Among the
sequential models, the simple RNNmodel is least accurate and even
worse than the MLP model, while LSTM and GRU perform similarly.
After adding the KSS branch to these models, all of their F1 scores
have been improved which could be up to 27%. This phenomenon
validates the efficacy of the KSS branch which considers the non-
contiguous location transmissions. As for the convolutional models,
they are not as good as sequential models like LSTM and GRU.
In general, the 2D versions perform better than the 1D versions.
This is probably because 2D convolutional layers can better capture
the correlations among different levels of semantic representations.
Also, it is not surprising to see that adding the identity functions
from ResNet helps further improve the overall accuracy.

Figure 8 compares the training time of all the models. Observe
that the sequential models can be trained more than 10 times faster
than the convolutional models, and our GRU-KSS model is among
the fastest. This is because the convolutional models are deeper,
and hence need more time to train.

Next, we also evaluate all the models using the real trajectory set.
As shown in Table 3, again our GRU-KSS model yields the highest
prediction accuracy among all. The training time also demonstrates
the similar patterns as that in the synthetic dataset. For the sake of
space, we omitted the figures here.

5.3 GRU-KSS
Finally, we evaluate how robust our model is under various scenar-
ios such as different trajectory lengths, different semantic levels and
different numbers of distinct locations. Figure 9 shows the F1 score
of GRU-KSS when varying the average length of trajectories, i.e.,
average number of places in each trajectory from 8 t0 13. Observe
that the changes in the trajectory length have very little impact
on the model’s prediction accuracy which stays around 97% in all
cases.

Figure 10 shows the effect of the number of semantic levels.
Observe that our model achieves similarly high prediction accuracy
when the semantic levels are less than 5. When the semantic levels
further increase to 6, the F1 score of our model dip below 90%. The
possible reason is that when there are too many semantic levels,
the representation of a single trajectory is further complicated as
it is the combination of all the level presentations, which in turn
increase the learning complexity of our model. Fortunately, in the
real world applications, 3 or 4 levels of semantic hierarchy are more
common and easier for adoption.

Figure 11 studies how the total number of locations may affect
our model’s performance. For that, we vary the distinct names of
locations from 200K to 1M. As shown in the figure, the F1 score
of our model is consistently above 97% regardless the number of
distinct locations contained by all the trajectories.

To sum up, our GRU-KSS model can be trained very fast to
achieve high prediction accuracy. It is robust under different sce-
narios and its prediction time meets the stringent real-time appli-
cations’ needs.

6 CONCLUSION
In this paper, we present a novel approach to social community
recommendation using a deep neural network model called Gated
Recurrent Unit with K-Sequential Shingling (GRU-KSS). Our model
uncovers previously hidden relationships between large-scale hu-
man semantic trajectories and corresponding social behavior, rev-
olutionizing the way we understand and utilize trajectory data.
GRU-KSS is designed with two branches that model contiguous
and non-contiguous location transmissions, respectively. This in-
novative approach sets our model apart from traditional trajectory
analysis algorithms, enabling us to deliver real-time social commu-
nity recommendations with unparalleled accuracy and efficiency.
Extensive experimental studies have confirmed the superiority of
our model compared to adaptations of other deep learning models.
With our model, users can expect to receive more personalized and
relevant recommendations, making it easier than ever to connect
with the communities that matter most to them.
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Figure 9: Varying the Average Length of
Trajectories

Figure 10: Varying Semantic Tree Levels Figure 11: Varying Maximum Number of
Locations
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