
Provable Privacy Guarantee for Individual Identities and Locations
During Virus Contact Tracing

Tyler Nicewarner
Vanderbilt University

Wei Jiang
Oracle Labs

Aniruddha Gokhale
Vanderbilt University

Dan Lin
Vanderbilt University

Abstract
Infectious disease contact tracing has been an important yet
challenging task especially when it comes to meeting the strin-
gent privacy requirements. Although there have been various
attempts in this line of research, there are also various limita-
tions in these works regarding the applicable scenarios and
efficiency. In this paper, we propose a unique contact tracing
system called PREVENT which can prevent any party includ-
ing the servers from knowing the plain texts of the locations
of the people being tracked. Our system is also extremely
efficient to provide real-time query services in large-scale
datasets that contain millions of locations. The system is
built upon a newly designed secret-sharing based architec-
ture that is tightly integrated into space partitioning trees.
Our experimental results on both real and synthetic datasets
further demonstrate that our system introduces negligible per-
formance overhead compared to contact tracing done on plain
texts of locations.

1 Introduction

Infectious diseases have long been a critical threat to people’s
health. The COVID-19 pandemic has caused severe loss to
human lives as well as country’s economy. Due to its highly
contagious nature, one of the most effective ways to stop the
spread of such an infectious disease is to quarantine people
who may have been exposed to the virus through effective
contact tracing, as pointed out by health experts [12]. Cur-
rently, contact tracing is typically performed manually by
health care professionals via questions and answers with the
patients, which is not only extremely labor intensive, highly
subjective, but also prone to errors and misinformation. This
is because current contact tracing requires significant human
efforts to investigate who have been in close contact with the
newly diagnosed patient during the virus incubation period
which could be as long as two to three weeks. Most of time it
is very hard to identify all the people that need to be quaran-
tined since the patient’s daily activities in the past few weeks

could be in various places with a large number of people in-
cluding those who did not directly interact with the patient
but contacted items that have been touched by the patient.

In order to ease the human efforts, various automatic con-
tact tracing approaches have been proposed. However, it is
still an extremely challenging task in terms of achieving full-
spectrum of identity and location privacy preservation for
individuals while conducting pervasive data collection and
efficient big data analysis. Unfortunately, none of the existing
industrial and academic works has provided a satisfactory
solution to this problem yet. For example, Google and Apple
have rolled out Covid-19 contact tracing apps that use Blue-
tooth radios to track physical proximity between persons. If
someone receives a positive COVID-19 diagnosis, any users
who have ever been in the proximity of the patient will be
identified or alerted for isolation. However, security experts
pointed out a long list of potential flaws in the Google and
Apple apps especially the privacy concerns that the apps could
reveal the identities of Covid-19 positive users or help adver-
tisers track them [4, 18]. Moreover, there is another critical
limitation of these apps. They are not able to find all the peo-
ple who may have been exposed to the virus which lingers in
the air after the patient left. The new science findings pointed
out that the COVID-19 virus can flow in the air of a confined
space for about 3 hours. That means people who came to
the place shortly after the patient left are still in the risk of
contracting the virus. Since these people were never in close
proximity with the patient, the Bluetooth-based app will not
record any information in this case. This problem is somehow
mitigated by the recent work that uses QR code scanning to
record people who visited the same places possibly during
different time intervals [13], but it is limited to places that
have set up QR codes and patients who later visited and met
other people at places without QR codes (such as sharing a
car ride) will not be traceable.

In the state of the art, although there may be some works
on seemingly similar topics such as location privacy protec-
tion [7], privacy-preserving trajectory querying [11], privacy-
preserving trajectory publishing [5], none of them can address

1

the above privacy protection challenges during the contact
tracing. This is because most of the existing location privacy
related works do not require users to reveal both real identi-
ties and precise locations simultaneously. For example, it is
sufficient for the server to provide local weather forecast to
an anonymous user who only discloses his/her city but not
the exact location; it is sufficient for the server to analyze
traffic flows on anonymized trajectories without knowing the
owners of the trajectories. However, the virus tracking incurs
new challenges on privacy protection since it needs to query
on both real identity and exact location information while pre-
serving both identity and location privacy. Otherwise, there is
no way to contact the people who may have been exposed to
virus.

In this paper, we propose a practical privacy-preserving
crowd tracking system, called PREVENT (Privacy pREserv-
ing Virus ENcountering Tracking), which will not only be
able to identify the people who have been in contact with
patient but also provide provable privacy guarantees for both
identities and locations. More importantly, our system enables
a more complete trajectory recording of participating users
without sacrificing their privacy. The PREVENT system con-
sists of three major parties as illustrated in Figure 1: (i) servers
which host the system; (ii) subscribers such as organizations,
universities, companies, etc. which participate in the contact
tracing program; (iii) users whose trajectories are tracked by
the system. The specific data flow in the PREVENT system is
as follows. An organization (subscriber) subscribes to the con-
tract tracing service (service provider) and asks its employees
(users) to install the PREVENT mobile app. The PREVENT
system will collect users’ locations anonymously from the mo-
bile app through a variety of outdoor and indoor positioning
systems that are available. Once a user has been diagnosed,
the user or his/her employer can send a contact tracing query
to the PREVENT system which will then conduct analysis
directly on encrypted user data and broadcast a list of pseudo
identities of the people who may need to be quarantined, to
all the subscribing organizations. During the whole process,
the system will provide the full-spectrum privacy guarantees
to users, which has not been achieved by any other existing
systems. Specifically, both users’ identities and trajectories
will be always anonymous to service providers; location in-
formation about users including the patients and people who
may have been exposed to virus will never be disclosed to
their employers; users only receive simple notifications about
potential virus exposure but will not receive any information
about when/where they may have been in contact with which
patients. In summary, our work makes the following unique
contributions:

• We design a novel privacy-preserving contact tracing
architecture and secret sharing based information man-
agement protocols. Our system achieves more strict pri-
vacy guarantees for users than any existing approaches.

Figure 1: An Overview of the PREVENT System

Not any single party in our system will gain information
more than they already possess.

• We design highly efficient query algorithms which is
able to identify affected people within milliseconds. This
is attributed to a unique pyramidal data structure that
arranges encrypted user location information at differ-
ent levels of spatial granularity. Moreover, our query
algorithm not only finds the people who are in contact
with patient zero, but also considers the transitive effect
whereby a person may be exposed to another person who
has encountered the patient zero and developed symp-
toms later on.

• We have implemented a prototype of the proposed sys-
tem and conducted extensive experiments over vari-
ous settings. The experimental results demonstrate that
our approach introduces very little overhead compared
to non-privacy-preserving approaches in terms of data
collection, and our approach is as fast as non-privacy-
preserving approaches in terms of queries.

• Our system allows for various location gathering meth-
ods. These include but are not limited to GPS, Bluetooth,
and door swiping systems.

The rest of the paper is organized as follows. Section 2
reviews the related work on privacy-preserving contact trac-
ing. Section 3 presents our proposed PREVENT system and
detailed algorithms. Section 4 analyzes the privacy properties
of our system. Section 5 reports experimental results. Finally,
Section 6 concludes the paper.

2

2 Related Works

There have been various works on privacy-preserving contact
tracing [18] ever since the pandemic started. However, to
the best of our knowledge, none of them handles the same
comprehensive scenarios or achieves the same strict security
goals as presented in our work, and none of them address the
scalability concerns.

Most of the existing works leverage short-range wireless
technology such as WiFi and Bluetooth to detect human-to-
human contact. Before the pandemic, there have been some
works on privacy preserving contact tracing such as the EPIC
system proposed by Altuwaiyan et al. [2]. Their solution
uses a devices connections to various wireless signals. With
the connection information they calculated a weight-based
matching score between users. They use a server to store the
encrypted signal information and to calculate the score match-
ing calculation. The process is done privately and without
disclosing any unnecessary information to the server. How-
ever, their approach is inherently computationally expensive
and their experiments only tested 5 pairs of people.

Later, Ahmed et al. [1] use secret sharing to help people
share encounter IDs over time. They do this by broadcasting
one share every minute so that the ID can be reconstructed
after k number of shares are received. Once the encounter ID
is reconstructed, the encounter is stored in a daily bloom filter
located on the users’ device. The encounter ID is deleted after
insertion into the bloom filter. When someone is diagnosed
positively, he/she can upload his/her encounter information
to the blockchain. Subsequently, other users can query the
blockchain in order to check if they have been in contact with
those who were diagnosed positively. This protocol has the
limitation that it misses any potential indirect contacts with
the virus persisting for a while after an infected person left
the area. Also, it requires users to actively check if they have
been in contact with the diagnosed patient while our system
will automatically notify users. Similarly, Ali and Dyo [3]
use Shamirs secret sharing to detect encounters with a beacon
using Bluetooth low energy. They have the users send out
their ID shares over time just like that in [1]. This approach
also has the same limitation that it only tracks people who
physically encounter each other.

Trieu et al. [19] propose a solution called Epoine that use
secrete sharing and Bluetooth to allow users to exchange a
randomly generated “contact token" for the users to store
when they are close to each other. For the system to query,
the server broadcasts a set of tokens that are sent by the users
who are confirmed to be infected. Other users then compare
the tokens received from the server to the tokens gathered
from contacts to see if contact with the disease was likely.
Following a similar idea, Pinkas and Ronen [14] propose a
Hashomer system that relies on Bluetooth to detect close con-
tact among users and record the pseudo IDs of encounters in
the application. When a user is diagnosed positive, he/she will

provide to the health bureau with all the ephemeral IDs that
were sent by his application in the last 14 days. The health bu-
reau will then broadcast these IDs mixed with other reported
IDs to all the users for them to check if they may be the
close contacts. In order to provide users more control of their
privacy, Song et al. [17] propose a notion of self sovereign
identity which allows individual users to determine when and
whether to share their identities when encountering others. All
these Bluetooth-based approaches have a common limitation
that they only help users who passed by each other to anony-
mously exchange information, whereas our approach allows
for contact tracing of people who do not necessarily come into
direct contact with each other but still potentially came into
contact with the virus due to visiting the same space within a
short time frame. This problem is somewhat mitigated by one
recent work that uses the QR code scanning to record people
who visited the same places [13]. The approach requires the
event owner to set up QR codes beforehand, which means the
tracing is limited places that have QR codes. Patients who
later visited and met other people at places without QR codes
will not be traceable.

There are several approaches which allow privacy preserv-
ing queries on entire trajectories rather than just encounters
recorded by short-range communication. For example, Kim et
al. [9] propose to use functional encryption to encrypt users’
trajectories and then perform queries directly on encrypted
data. However, their settings will require all the users to use
the same encryption key to generate encrypted trajectories
which will be stored by the server. This may not be secure
enough since an attacker just needs to compromise a single
user to decrypt the whole dataset. Reichert el al. [15] propose
to apply secure multi-party computations among all users. As
it requires all users to participate in SMC to calculate if their
locations were ever in the infectious area of others, it is not
scalable when there are a large number of users like the city
and multi-organization setting in our work. Their work does
not present any experimental results either. Most recently,
Zhang et al. [21] propose a block-chain based scheme to
achieve privacy-preserving contact tracing in 5G-integrated
environment. Their system consists of a trusted medical center
and fog nodes. Fog nodes are responsible to log the locations
of people near them using 5G and store them on a “permis-
sioned blockchain". Users use their phones to upload their
encrypted identities when passing by checkpoints. The users
are also able to check if their routes have included any poten-
tially dangerous locations by checking the blockchain. In their
system, users will not know others’ exact location informa-
tion, but the medical center is to be assumed trusted and has
access to know anyone’s locations and track any user. This
is different from our system as we ensure that no one party,
including servers, are able to gain the location information of
a user. In our system, organizations or medical centers will
only know the list of user names who may be infected but
nothing about the places they have visited preserving their

3

location privacy.
When it comes to privacy preservation, one may also think

about homomorphic encryption. However, this technique may
not be suitable here due to the following two reasons. First,
consider the number of people and the places they will visit
during several weeks. The amount of location information to
be analyzed is in astoundingly large scale. However, homo-
morphic encryption incurs high computational overhead [20]
and has not been successfully employed for real-time large-
scale data set analysis yet. Second, the homomorphic-based
system needs a pair of public and private keys. If we allow
individuals to encrypt their locations using the public key and
let one of the PREVENT servers to keep the private key, the
key server could become a single target. Once an attacker
compromises the key server, the attacker will be able to de-
crypt all the users’ encrypted trajectory information.

In addition, there have been works on secure cloud data
storage and retrieval [10]. However, those approaches are not
applicable to contact tracing because they only allow data
owners to securely retrieve their own files whereas contact
tracing requires to query other people’s information.

3 The Proposed PREVENT System

In this section, we present our proposed privacy-preserving
contact tracing system, namely PREVENT (Privacy pREserv-
ing Virus ENcountering Tracking). Our system can support
large-scale data storage and queries for multiple organizations,
multiple cities and states.

3.1 Threat Model
There are three parties in the PREVENT system: contact
tracing service provider (servers), subscribers (employers),
and users (i.e., people being tracked).

• Employers: Organizations and companies which sub-
scribe to the service will help maintain a list of their
employees’ pseudo IDs for the purpose of notification in
case one needs to be quarantined.

• Users: People being tracked are data providers who will
submit their location information at the end of each day
to the servers in an encrypted form. The location infor-
mation can be collected in a variety of means including
GPS, Bluetooth, door swiping systems, etc., to record
different types of locations including static locations
like supermarket and dynamic locations like buses. The
detailed location reporting process will be elaborated
later.

• Service Provider: Majority of data storage and process-
ing tasks are conducted by the service provider which
has multiple servers. Following the same security as-
sumption in many recent works of secure multi-party

computation [6], each server is assumed to be indepen-
dent of one another (e.g., located in different commercial
clouds), and will not collude unless being compromised
by attackers. To achieve such separation of responsibili-
ties in real world scenarios, one server may belong to a
government agency whereas the other server may belong
to a company that provides such a tracking service.

In our system, we guarantee that no single party except the
user him/herself knows the exact locations. The privacy goals
with respect to each participating party are summarized as
follows.

• Users are fully anonymous to service providers.
Servers in the PREVENT system will not know the plain
texts of users’ real identities and locations.

• Users’ trajectories are fully anonymous to their em-
ployers. System subscribers (organizations or employ-
ers) will not know any individual’s location information,
including when and where he/she has been to. For those
who need to be quarantined, only their identities are re-
ported to the employers. Users’ location information is
always kept secret.

• Peer users do not know each other’s anonymous ID
or reported locations: through our system, users even
from the same organization will not know each other’s
anonymous ID and what location information that others
have reported.

3.2 System Overview
The essential function of the PREVENT system is to conduct
anonymous contact tracing, which is carried out by answering
a privacy-preserving location query issued by the subscriber.
In particular, upon a person being diagnosed, a contact tracing
request can only be issued by the patient’s organization
upon receiving notification from the patient’s health care
provider to prevent any misuse of this tracking system by
peer users. Each tracing request by each organization will
be logged by the servers for future auditing purposes by the
law enforcement. This contact tracing request will contain
the pseudo IDs of the patient for the servers to look up
the patient’s encrypted locations in the database. Then, the
servers will search other users’ encrypted locations to identify
who have passed by the proximity of the places visited by
the patient within the risky time windows, e.g., a person
stopped by the same place within 3 hours after the patient
left. After that, the PREVENT system will broadcast the list
of pseudo IDs of the people at risk to all the subscribers. The
subscribers (employers) can then look up the local database
to find the matching real identities of these pseudo IDs and
contact them for quarantine. Definition 1 formally defines the
query. In Section 3.6. we will elaborate the detailed query
protocols.

4

Definition 1: Privacy-preserving Contact Tracing
Query: Let D be the infectious distance, τ be the infec-
tious time window, and T be the incubation period. Given
a patient’s tracking ID u0, the privacy-preserving contact
tracing query Q returns a list of anonymous tracking IDs
U = {u1, ...,uk}, whereby ui satisfies the following condition:
at least one location of ui appears within D distance to at
least one location of the previous identified close contact u j
during T and tloci − tloc j ≤ τ.

3.3 Privacy-preserving Data Transmission

The ultimate goal of anonymous data transmission is to pre-
vent any party from knowing the user’s location information.
In other words, the user’s organization, the PREVENT system
and other peer users will not know the plain texts of the user’s
locations. In order to prevent these parties from knowing an
individual’s location data, the individual has only one choice
which is to anonymize his/her location information locally
before sending it out to the PREVENT system. This privacy
requirement imposes a critical challenge on the design of the
subsequent contact tracing queries since queries will need to
be conducted on fully anonymized user data too. That means
we need to design a data anonymization mechanism that not
only hides user’s information from other parties but also al-
low other parties to carry out computations directly on such
anonymized data.

To simultaneously meet the stringent requirements on
privacy protection, anonymous calculation as well as com-
putational efficiency, we propose the following novel data
anonymization and storage mechanisms based on the phi-
losophy of “separation of responsibilities". Specifically, the
mobile app at the user side will be in charge of two major
functions: (i) stay point recording; and (ii) location reporting.
Each employee will pre-generate a large number of pseudo
IDs for its employees. The employers will also be responsi-
ble for storing the mapping between the pseudo IDs and real
identities. The servers will be responsible for all the heavy
data storage and processing.

At the user side, the mobile app will use various means of
location detection to identify the stay point, i.e., the location
that the user stays longer than the infectious time window
τ. For example, GPS can be used to record the locations
where a user lingers longer than τ, such as a supermarket, a
restaurant and a shopping mall. Bluetooth technology similar
to some existing apps [14] can be used to activate the location
recording when the user encounter other people who rode the
same car, bus, subway, or airplane. Specifically, once a close
contact is detected by the Bluetooth in the user’s smart phone,
our app will start recording the duration of the encounter.
Once the encounter lasts more than the infectious time, the
user’s current GPS location will be recorded to be submitted
to the server at the end of the day. The encounter with the
same person during the same time period will only trigger

one-time location recording. Similarly, locations collected
from the door swiping systems will be recorded by our app
for reporting only if the user stays in the room long enough.

The mobile app will employ the additive secret share
scheme to split each recorded stay point and corresponding
timestamp into secret shares. Secret shares of different stay
points will be attached with different pseudo IDs received
from their employers. In this way, none of the servers knows
about the user’s real ID nor the user’s exact location. The
additive secret share scheme also helps guarantee that unless
more than k servers are under control of an attacker (which
adds high cost to the attacker), the user’s location will be
kept confidential. In order to further prevent the servers from
knowing the visiting order of locations, each user will not
immediately report the current location to the server. Instead,
users only need to send the set of location updates once at the
end of each day. Since the timestamps of each location is also
a piece of secret share, the servers will not be able to discover
which location was visited earlier than another. Specifically,
at the end of each day, the user’s mobile app will encrypt the
secret shares of all the stay points along with their pseudo IDs
using the servers’ public keys and send them to the servers.
The secret shares of the same stay point will be sent to differ-
ent servers. Also, the secret shares of different stay points will
use different IP addresses which can be achieved using VPN
apps. This would help prevent the servers from correlating
multiple location reports to the same user.

Storing the secret shares of users’ location information ful-
fills the first design goal – the privacy protection. It is still not
efficient for the subsequent large-scale contact tracing queries.
This is because a brute force approach to finding people at
risk would be to compare all of the patient’s locations with
those of all other users’, which is obviously time consuming
especially when these comparisons need to be performed via
secure computation protocols on secret shares. Therefore, we
further enhance the user data organization and develop a data
filtering stage to significantly narrow down the search space
and obtain a much smaller set of candidate location sets for
fine-grained analysis.

Our idea is to hierarchically partition the overall space
under consideration into grids with equally-sized cells as
shown in Figure 2. To ease the calculation, we trim the overall
space into a square which has width of W , minimum latitude
x0 and minimum longitude y0. The number of levels in the
space partitioning tree is denoted as H, the width of the grid
cell at the ith level is denoted as wi where the first level is the
lowest. The leaf nodes in the tree store secret shares of users’
locations while the internal nodes contain secret shares of grid
IDs the users are located. The height and widths of the grid
cells at each level are known to all parties, thus the mobile
app at each user side can automatically calculate which grid
cells the user is currently located using Equation 1, where x
and y are the latitude and longitude of the user’s location. The
grid IDs, GIDs, will be split into secret shares and appended

5

Figure 2: An Overview of Data Structure

to the previously generated secret shares of the exact location
and timestamp.

GIDi(x,y) = ⌊
x− x0

wi
⌋+ ⌊(y− y0

wi
−1) ·W

wi
⌋ (1)

There is a special handling of user’s locations within D
distance to the border of a grid cell as illustrated in Figure
3. In addition to the previous message, we will create one to
three additional messages that contain the new secret shares
of the location and the neighboring grid cell IDs. Figure 3
shows an example. The colored circles represent locations of
users u1, u2 and u3, respectively. We can see that u1 is located
less than D (infectious distance) to the border of grid cell
G3, which means some users such as u3 in grid cell G3 may
be within the infectious range of u1. In order to allow the
subsequent contact tracing query to be efficiently conducted
within a single grid cell, we will let the servers store u1’s
pseudo ID in the grid cell G3 as well. Specifically, a message
that contains newly generated secret shares of u1’s location,
grid cell G3 and its parent grid cell IDs will be sent to the
servers in addition to the message for u1’s original grid cell
G4. Similarly, u3 will also be stored in grid G4’s group at the
server side. As for the corner case like u2, three additional
messages will be created to include u2 in grid cells G1, G2
and G3.

This example also hints that the size of the grid cell at the
lowest level should not be too small. In the extreme case when
it is smaller than the infectious distance as the overlap from
each cell is half the infection distance, all the locations in
the cell will need to be included in some neighboring cells.
Therefore, we set the cell size at the lowest level to at least
2D (i.e., two times of the infectious distance). It is worth
noting that even though the location at the border of edge cell
produces a couple of more GIDs, the servers will not be able
to know whether the user is located at the edge of a cell based

on the total number of GIDs the user sent. This is because the
GIDs of all the locations are sent together at the end of day,
and different users may visit different numbers of locations.
It is indistinguishable to the servers whether a longer list of
GIDs is caused simply by users visiting more places or users
located at the border of cells.

Later, during the queries, privacy-preserving filtering can
be carried out with the aid of the GIDs. The grid cell size
is a parameter that can be tuned according to the density of
locations to improve the query performance. More details
about how to determine the optimal size of cells and how to
use GIDs for queries will be elaborated in the next subsection.
Algorithm 1 summarizes operations conducted by the user’s
mobile app.

Figure 3: Special Handling of Locations near Borders

3.4 Privacy-preserving Data Storage
At the server side, each server maintains a hash table and a
space partitioning tree everyday for latest T days, where T
is the incubation period. Such storage can significantly im-
prove the efficiency of the subsequent contact tracing queries
as discussed in the next subsections. The hash table stores
pseudo IDs, the secret shares of locations, timestamps, and
grid IDs along with a pointer to the leaf node of the space

6

Algorithm 1 Location Data Transmission from a User
1: Collect a set of pseudo IDs from the server

UIDu={UIDu
1,UIDu

2, ...,UIDu
m} (once at the first

usage)
2: Establish a sufficiently large prime number Q
3: for each stay point lock at time t of the day do
4: Offset Cordinates To Be In Range [0,360]
5: long← O f f setCords(lock.longitude)
6: lat← O f f setCorts(lock.latitude)
7:
8: Calculate N Secret Shares Of lock
9: for i = 1; i < N; i++ do

10: Xi← RandomInteger(0,Q)
11: Yi← RandomInteger(0,Q)
12: end for
13: XN ← (long−∑

N−1
i=1 Xi) mod Q

14: YN ← (lat−∑
N−1
i=1 Yi) mod Q

15: for i = 1; i≤ N; i++ do
16: li← (Xi,Yi)
17: end for
18:
19: Calculate The Ids For The Insertion Tree
20: for lev = 2; lev ≤ H; lev ++ do
21: Calculate GIDlev of lock
22: Calculate N secret shares of GIDlev
23: for i = 1; i < N; i++ do
24: Gi

lev← RandomInteger(0,Q)
25: end for
26: GN

lev← (GIDlev−∑
N−1
i=1 Gi

lev) mod Q
27: end for
28:
29: Calculate N secret shares of timestamp t
30: for i = 1; i≤ N; i++ do
31: Send ⟨UIDu

k , ti, li,G
i
1,G

i
2, ...,G

i
H⟩ to Server i

32: end for
33: end for

hierarchy. In the space partitioning tree (left side of Figure
2), users’ data with same grid IDs will be grouped together.
Specifically, except the leaf nodes that store the pseudo IDs
of all the users in the same grid cell, each entry at other levels
of the tree only need to store a single pseudo ID of the first
user being inserted which is called the representative user. It
is important to note that the plain text of the grid ID is hidden
from the server. Each server only possesses a piece of secret
share of the original grid ID, and hence a single server is not
able to obtain the complete grid ID. Also, attributed to the
property of the secret sharing scheme, each user’s secret share
is different from one another even if they are in the same grid
cell. Moreover, if a grid cell does not contain a location point,
this grid cell will not be stored as an entry in the tree.

Given a user’s location update which consists of secret
shares of a set of locations (or stay points) visited by the user

Figure 4: Comparisons Needed for Inserting a Location

in a day, the server will insert each piece of location infor-
mation as follows. Starting from the root level of the space
hierarchy, the servers will conduct a collaborative protocol
to compare the root level GID in the newly reported location
with that of the representative user at the root level in the cur-
rent space partitioning tree. If a matching GID is identified,
the secure comparison will proceed to the children nodes of
this matching GID. The comparison process continues until
reaching the leaf node of the space hierarchy. At any level,
if there is not any matching GID, a new entry will be cre-
ated to store the pseudo ID of this user and this user is the
representative user of this entry.

The protocol for privacy-preserving comparison of the se-
cret share of the grid ID in the new message (denoted as Gui)
and the grid ID of the representative user (denoted as Gi) in
the space partitioning tree at Server Si is outlined in Algo-
rithm 2. First, each server calculates Gui−Gi, and stores this
difference in di. Second, all the servers execute the secure
random number generation protocol [8] to generates a random
number r. At the end of this protocol, each server only has
a share ri of this random number r but does not know the
value of r. Then, each server applies the secure multiplication
protocol [8] to derive vi = di · ri, and shares vi with all the
other servers. Finally, every server calculate the sum of vis,
i.e., ∑

N
i=1 vi. If this sum is zero, that means the two grid cell

IDs match.
The maximum number of secure comparisons for inserting

a new location can be estimated using Equation 2. Specif-
ically, at each level, a new location needs to be compared
with all the entries in one node as illustrated in Figure 4. The
maximum number of comparisons is equivalent to the sum
of the branching factor or width of each level wi where w is
the set of widths for each level. With a tree of depth of H the
widths w0 to wH−1 are given as parameters to the system and
wH is the branching factors of the grid cell parents,

⌈ N
∏

H−1
i=0 wi

⌉
.

Cinsert =
⌈ N

∏
H−1
i=0 wi

⌉
+

H−1

∑
i=0

wi (2)

3.5 Optimization of Space Partitioning
We now take a closer look at how we can optimize the in-
sertion process to minimize the maximum number of com-
parisons required for insertion, Cinsert . Since the w only con-

7

Algorithm 2 Secure Comparison For Equality Check

Require: Ri
j is the jth region level on Si

Require: uRi
j is the ith share of the jth region level

1: S3 Computes
2: u,v← RandomInteger ∈ [0,Q)
3: w← uv
4: Generate shares for u,v,w
5: Send [u1,v1,w1] to S1
6: Send [u2,v2,w2] to S2
7:
8: S1 Computes
9: α1← R1

j −uR1
j

10: β1← RandomInteger ∈ [0,Q)
11: χ1← α1 +u1

12: γ1← β1 + v1

13: Send [χ1,γ1] to S2
14: χ = χ1 +χ2

15: γ = γ1 + γ2

16: d1← γχ−χv1− γu1 +w1

17: Generate Random Number r1

18: Send d1r1

19:
20: S2 Computes
21: α2← R2

j −uR2
j

22: β2← RandomInteger ∈ [0,Q)
23: χ2← α2 +u2

24: γ2← β2 + v2

25: Send [χ2,γ2] to S1
26: χ = χ1 +χ2

27: γ = γ1 + γ2

28: d2←−χv2− γu2 +w2

29: Generate Random Number r2

30: Send d2r2

31:
32: D← d1r1 +d2r2 mod Q
33: return D = 0

sists of positive integer values the term ∑
H−1
i=0 wi does not

effect the ceiling function so we can rewrite Equation 2 as⌈
N

∏
H−1
i=0 wi

+∑
H−1
i=0 wi

⌉
. We then drop the ceiling part of the

function to focus on the interior section N
∏

H−1
i=0 wi

+∑
H−1
i=0 wi.

Due to the ceiling function rounding all decimals up to the
next integer if we find the minimum of the interior function
we are guarenteed to also have the minimum of the entire
function. We then look at the domain of positive real num-
bers, S, and look at the Hessian, H, of our function defined
in Equation 3. H(w)i, j can be written as a ·∏k

1
wb

k
for some

positive number a and positive integer b. As xk > 0 for any in-
terior point of S, 1

xb
k
> 0. H(w) is positive for all values in the

domain S. Therefore the function is convex over the domain
of positive real numbers.

Figure 5: Comparisons Needed for a Query

H(w)i, j =

{
n

xix j ∏k xk
i ̸= j

2n
xix j ∏k xk

i = j
(3)

Since the function is convex any minimum point found will
be the global minimum. This allows us to find the minimum
of Cinsert given any N and H using the derivative shown in
Equation 4. When solving for each derivative set to 0 we see
that ∀w ∈ {w0...wH−1} wi =

H
√

N

∂wi

∂Cinsert
= 1− N

w2
i ∏

i−1
j=0 w j ∏

H−1
k=i+1 wk

(4)

3.6 Privacy-preserving Multi-generation Con-
tact Tracing Queries

As shown in Definition 1, the goal of a contact tracing query
is to identify users who had visited the same places as the
patient during the infectious time window. Since each server
possesses only a piece of secret share of the user’s location
data, the contact tracing queries will need to be conducted
via a collaborative protocols among multiple servers without
leaking users’ location information to any server.

The query issuer (e.g., the employer) submits a list of
pseudo IDs used by the employee who has been infected
to the server. For each received pseudo ID, the server will
execute the query as follows. First, the server will retrieve the
location information corresponding to the pseudo ID. Then,
the servers will securely compare the location visited by the
patient with those of other users to see if they are within the
infectious region and time window. The pseudo IDs of the
identified users will be treated as new query inputs and the
query process will be repeated until all possible contacts are
identified within the incubation period of the first patient. The
final output of the query will be the pseudo IDs of all the
people at risk. In what follows, we elaborate how to compare
locations in a privacy preserving way.

Assume there are n servers S1, ..., Sn, each of which con-
tains secret shares of the users’ location information during

8

the length of the incubation period (e.g., last 14 days). Given a
patient’s pseudo ID UIDp, each server will use the hash table
to retrieve the lowest-level leaf node in the space partitioning
tree that the patient’s location belongs to as shown in Figure 5.
As our space partitioning ensures that query results regarding
a particular location will be inside the same leaf node that the
patient’s location resides, the servers just need to compare
locations within each retrieved leaf node. The structure of the
space partitioning tree is the same across all the servers, i.e.,
the users are grouped in the same way. The only difference
among the space partitioning trees is that different servers
store different parts of the secret shares of the same location.

The specific protocol for comparing the secret shares of
locations in the same group is depicted in Algorithm 3. Let
li(xi,yi) denote the secret share of the location of the user who
is in the same group as the patient at server Si, and liq(xiq,yiq)
denote the querying location (i.e., the patient’s location). The
goal of this protocol is to check if the user is within the dis-
tance of D of the patient. First, each server computes the
differences between the secret shares of the user’s and the
patient’s x and y coordinates: ∆xi = xi− xiq, ∆yi = yi− yiq.
Then, all the servers together execute the secure multiplica-
tion protocol [8] to compute the square of the differences, i.e.,
dxi = (∆xi)

2, dyi = (∆yi)
2. Next, each server sum up dxi and

dyi to obtain the share of the square of the Euclidean distance
between the user and the patient, denoted as di. Finally, all the
servers together perform the secure comparison protocol pro-
vided in [8] to check if the square of the Euclidean distance
is smaller than D2 (the square of the infectious distance).

The cost of finding close contacts of the patient can be
estimated as follows. Suppose that there are currently Nu
users’ information in the system, and the average number
of locations recorded for each user is κ. Assuming all the
users’ locations are uniformly distributed in the space, each
grid cell at the lowest level will contain approximately Nu·κ

(W
w1

)2

locations. If the average length of user’s trajectories is Lu,
the average number of grid cells that a user falls in can be
estimated as lu

w1
. Since the query will compare the patient’s

location with the locations in the same grid cell, the query cost
can be estimated as the product of the number of grid cells
visited by the patient and the number of locations in each grid
cell as shown in Equation 5. The cost of the multi-generation
query is simply the sum of these individual query cost. From
the equation, we can observe that the query cost increases
with the grid cell size w1. This is because larger grid cells
contain more locations to be compared. We can also see that
the cost reaches highest when w1 equals the space width W
(i.e., no space partitioning). Thus, a relatively small grid cell
will benefit the query performance. It is worth noting that the
grid size should not be too small to cause extensive special
handling cases as discussed in the insertion process.

Cquery =
Nu ·κ
(W

w1
)2
· lu

w1
=

Nu ·κ · lu ·w1

W 2 (5)

Algorithm 3 Secure Comparison of Euclidean Distance
Input: (Si, li, liq, D)
Output: ∆l ≤ D
Require: D is the infection distance squared
Require: li→ (Xi,Yi)
Require: liq→ (Xiq,Yiq)

1: for all Si do
2: ∆Xi← Xi−Xiq
3: ∆Yi← Yi−Yiq
4: dxi← SecureMultiplication(∆Xi,∆Xi)
5: dyi← SecureMultiplication(∆Yi,∆Yi)
6: di← dxi +dyi
7: SecureComparison(di,D)
8: end for

4 Security and Privacy Analysis

4.1 Privacy Guarantee
Recall that there are three types of parties in the system: the
servers, the organizations (i.e., employers), and the people
being tracked. Our system ensures that none of any single
party would gain information more than it possesses. That
also means an attacker will not be able to gain the location
information from attacking any singular party. First, when
the server processes the contact tracing query, the server does
not know the plain texts of the locations that the patients
have been to. After the server found users who may be a
close contact of the patients, the server does not know the
real identities of these close contacts nor the plain texts of
the exact locations of these close contacts. Thus, our system
does not reveal locations of patients and close contacts to the
server. Second, the server only sends the pseudo IDs of close
contacts to employers, so the employers do not know the exact
locations of any patient or their employees who have been
the close contacts. Thus, our system does not reveal locations
to employers. Third, the users who may be in risk would
receive a simple message like “you may have been in contact
with the virus". From the message, the users cannot tell which
patient they were in contact with or when and where they have
encountered the patients. Thus, our system does not reveal
any patient locations to the close contacts. The following
are formal proofs about privacy guarantees achieved by our
system.

Theorem 1 Without any background knowledge, the proba-
bility that a server reveals the real identity of a user is no

9

more than 1
||Dpi||·||Dri|| , where Dpi is the domain of all possible

pseudo identities, Dri is the domain of all possible real identi-
ties, and symbol ‘||D||’ denote the number of elements in set
D.

Proof: Each server has only secret shares of users’ pseudo
IDs. Since each location is associated with a different pseudo
ID and IP address, the server will not know which set of loca-
tion information belongs to the same user from the location
reporting process. Thus, given an individual secret share, the
server may guess the secret share is corresponding to one
of all possible pseudo IDs, i.e., 1

||Dpi|| . Given a pseudo ID,
the chance for the server to correlate it with the real identity
without any background knowledge is 1

||Dri|| . By multiplying
these two probabilities, we obtain the probability the server
may infer the real identity of a user from the received secret
share.

Due to the security of the underlying threshold Shamir
secret sharing scheme [16], as long as the number of colluding
servers is less than k, these servers cannot derive the original
data with the probability higher than that stated in Theorem
1. In addition, the equality and secure comparison protocols
have proven to be secure and provided by the well-known
MP-SPDZ library [8]. As a result, the servers will not learn
anything about the underlying values while executing these
protocols. ■

Theorem 2 Without any background knowledge, the proba-
bility that a server knows the smallest grid cell (at the leaf
level of the partitioning tree) that a subscriber’s location is
located is no more than 1

Ng
, where Ng is the total number of

grids at the lowest level of the space partitioning tree.

Proof: Each server has secret shares of users’ location in-
formation. Each location secret share is associated with a
different pseudo ID and IP address, which prevents the server
from correlating multiple locations to the same user. Given an
individual location secret share, the server may at most guess
this location is in one of Ng possible grid cells, and thus the
location disclosure probability is 1

Ng
. ■

Note that this probability is very low as Ng is typically
very large. For example, a 3-level partitioning tree with 100
sub-partitions in each partition at each level yields total 100 ·
100 ·100= 1M cells at the final level, i.e., Ng = 1M. Moreover,
the chance the server knows the exact location of a user from
the secret share is even lower which will be 1

Dl
, whereby Dl

is the domain of all possible locations in the service area.

Theorem 3 With background knowledge of an outbreak lo-
cation, the probability that a server correlates the patient’s
location secret shares with the actual grid cells is no more
than q!(4N2

v−q)!
(4N2

v)!
, where Nv is the number of grid cells the pa-

tient’s trajectory intercepted, q is the total number of patient’s
reported locations.

Proof: If the server has background knowledge that an out-
break of infections occurred at an organization and the patient
is from this organization, the server may attempt to infer other
locations visited by this patient using this extra background
knowledge. Let Lu denote the patient’s trajectory length and
let w1 be the length of the smallest grid cell. The number
of grid cells intercepted with the patient’s trajectory can be
estimated as Nv= Lu

w1
. Using the grid cell that the organization

is located as the center, the patient’s trajectory may reach grid
cells within the radius of Nv cells. For simplicity, we approxi-
mate this total area as a square shape instead of a circle. The
number of grid cells in this area will then be (2Nv)

2 = 4N2
v .

Since the server does not know the visiting order of the loca-
tions, the first randomly picked location secret share could be
mapped to one of 4N2

v grid cells; the second location secret
share could be one out of 4N2

v −1 remaining grid cells; and

so on. There are total (4N2
v)!

q!(4N2
v−q)! choices of mapping from the

secret shares of the patient locations to grid cells. Thus, the
probability of inferring the actual grid cells that the patient
had passed by is the inverse of the above total choices. ■

We show that the above probability is very small in the
real world. Given a grid cell that is 30ft wide, a 5-mile trajec-
tory will intercept about 880 cells, i.e., Nv = 880. The possi-
ble area the patient may visit could contain 4N2

v ≈3×106

cells. Even if the patient reported only 3 locations (i.e.,
q = 3), the location inference probability is still as low as

1
(3×106)×(3×106−1)×(3×106−2)≈

1
27×1018 .

Theorem 3 also applies when the server intends to correlate
some users’ location secret shares to grid cells based on the
knowledge of some hot spots such as a place which just held
a fair with a large number of attendants. In fact, inferring grid
cells using population density of grid cells would be even
harder than the previous case when the server knows a patient
is from a specific organization. This is because density of
grid cells vary throughout a day. The server only receives
aggregated density information (i.e., all the users who visited
the place throughout the day) since the timestamps are hidden.
Also, due to the generation of multiple grid IDs for locations
at the border of cells, the density of each cell observed by the
server already deviates from the real world density. Further,
groups of similar densities are indistinguishable from one
another.

Theorem 4 With or without background knowledge, the prob-
ability that an organization can infer its employees’ locations
more than its background knowledge is nearly 0.

Proof: The organization stores the mapping between the
real identities and the pseudo IDs of its employees. As the
location reporting is done directly between the employee’s
mobile app and the servers but not through the organization,
the organization does not have any location related informa-
tion of its employees. Upon receiving the contact tracing
results, the organization will know who are the other employ-

10

ees in close contact of the diagnosed patient, but still do not
know what places they had been to together. Even if the or-
ganization has background knowledge of the possible place
(e.g., a bar) that the group of infected employees may have
been to together, the organization knows no other locations
about these employees other than that since the server does
not return any location information as the query result.

Also, organizations will not gain any location informa-
tion by colluding with one another and exchanging their em-
ployee’s information since they all receive the same query
results that contain only pseudo IDs but nothing about loca-
tions. ■

Theorem 5 With or without background knowledge, the prob-
ability that a user can infer other users’ IDs or locations more
than his/her background knowledge is nearly 0.

Proof: In our Prevent system, peer users are not sharing
information with each other, and hence they do not know each
other’s pseudo ID or location information. Even if an attacker
compromises multiple users’ mobile apps, the attacker will
only know the victims’ pseudo IDs and locations, but still
nothing about others. ■

4.2 Security and Ethics Problems Discussion
To deploy our system in the real world, it should be integrated
with existing security mechanisms for authentication, anti-
malware, and network communication security. For example,
users’ accounts should be validated by their employers and au-
thenticated to their mobile apps. This helps prevent malicious
users from creating fake accounts in the servers. Also, the
mobile app of our system at the user side should be protected
from tampering. As these are common techniques but not our
contributions, we will not dive in deeper here.

In addition, our system is designed to encourage more users
to participate in contact tracing as they may feel more com-
fortable of reporting their locations without sacrificing their
privacy. However, we do not intend to force users to report
locations even if their companies subscribe to the contact
tracing services. That means it is possible that some users
may turn off the tracking mobile app or simply leave their
phones at home. By doing this, they also lose the chance of
being notified about potential contact with patients. These
human factors are out of the scope of our paper as out goal is
to ensure the privacy guarantee of participating users.

5 Experimental Studies

The main goal of the experiments is to evaluate the efficiency
of the proposed privacy-preserving data insertion and contact
tracing queries. For this, we compare our system with two
baseline approaches: (i) the system without any privacy pro-
tection (denoted as “NoProtect"), i.e., directly works on plain

texts of user data; (ii) the system with privacy protection but
without space partitioning tree, denoted as (“NoTree"). All
the experiments are conducted on the desktop with Intel Xeon
Bronze 3104 1.7GHz CPU, 64GB RAM.

For the experiments, we use datasets derived from the real
dataset called GeoLife [22], which contains 17,621 trajecto-
ries with a total distance of 1,251,654 kilometers over four
years. Each trajectory is represented as a sequence of time-
stamped locations with longitude and latitude. These trajecto-
ries are originally from 182 users over four years. Since the
real dataset is relatively small, we generate synthetic datasets
that mimic GeoLife trajectories, in order to test the scalabil-
ity of our approach. We vary the total number of users from
100K to 500K. Each user’s trajectory is generated by picking
locations in the real trajectories where people have lingered
for the minimum infectious duration. Each trajectory contains
maximum 10 locations. We generate one trajectory per user
per day for 14 days. This results in maximum 7M locations
and 70M locations in the test dataset. It is worth noting that
our system can take any types of location as input, and it is
not limited to the types of locations which can be collected
via various means including GPS, indoor positioning systems,
keycard entry systems, etc.

Both the insertion and query performance are evaluated
using CPU time. As for the insertion, we record the average
insertion time per user when recording all the users’ daily
trajectories. When testing the query performance, we ran-
domly select 100 users as patients to launch the contact trac-
ing queries, and record the average query time.

5.1 Effect of the Total Number of Trajectories

In the first round of experiments, we vary the total number
of trajectories from 1.4M to 7M which are corresponding to
100K to 500K users trajectories in 14 days. The infectious
distance is set to 6ft, and the incubation period is 14 days. In
this round, we adopt a space partitioning with small grid cells
of approximately 30ft by 20ft. Specifically, we first partition
the space into 173 region cells, and then further partition
each region into 176 cells, which result in a 3-layer space
partitioning tree. We compare the performance of our system
with a similar system that uses plain text opposed to secret
shares to store the data and does not protect privacy.

Figure 6 reports the average insertion cost of the last 100
users to be inserted. It is not surprising to see that our privacy
preserving algorithm takes more time than the algorithm that
works directly on the plain texts. This is because to achieve
privacy preservation, we need to conduct multiple rounds of
secure comparison when inserting user’s location informa-
tion. Fortunately, our algorithm is still fast enough to provide
real-time services as each user’s insertion can be completed
still within milliseconds. Moreover, our insertion cost stays
nearly constant with the increase of the number of users and
trajectories. which demonstrates the scalability of our system.

11

Figure 6: Effect of Total Number of Trajectories on Insertion
Performance

It is attributed to the use of our proposed space partitioning
tree. For each insertion, we only need to compare the new user
with the single representative user in each grid cell. As long
as the space partitioning is the same , i.e., the total number of
grid cells stays the same, the insertion performance will not
be affected by the total number of trajectories that need to be
stored.

Next, we examine the query performance of our algorithm
against the baseline approach that has no privacy protection.
Figure 7 shows the average query cost of finding the people
who were within the infectious distance of a given patient
during the incubation period. From the figure, we can ob-
serve that the time to perform our secure query is very short,
i.e., only a few milliseconds, even thought it is slower than
the approach without privacy protection. The overhead of
our query algorithm is introduced by the need to conduct
secure comparisons between secret shares of users’ trajecto-
ries. In addition, we also observe that the query cost of both
approaches increase with the total number trajectories. The
reason is straightforward. In the same space, the more trajec-
tories, the more people may be within the infectious distance
of the patient, and hence more comparisons are needed.

5.2 Effect of Space Partitioning

We now take a closer look at the effect of space partitioning
by comparing the performance of our approach using small
and large grid cells, respectively. Here we use the dataset with
100K users and 1.4M trajectories. The partitioning with small
cells are the same as that in the previous experiments whereby
each cell is about 30ft by 20ft. The partitioning with large
grid cells has the cell size of 300ft by 200ft. Both have three
layers. When the small grid cell is used, the entire space is
first partitioned into 173 regions and each region is further
partitioned into 176 sub-regions. Then, each sub-region con-
tains around 197 small cells. When the large grid cell is used
for partitioning, the whole space is first partitioned into 33 re-

Figure 7: Effect of Total Number of Trajectories on Query
Performance

gions, and each region is divided into 39 sub-regions. Finally,
each sub-regions contains approximately 45 grid cells.

Figure 8 compares the average insertion cost in the fol-
lowing three scenarios: using no space partitioning tree but
only one level of large grid cells, partitioning using small grid
cells, and partitioning using large grid cells. Observe that the

Figure 8: Effect of Space Partitioning on Insertion Perfor-
mance

insertion cost is highest among all when no space partitioning
tree is used, and the insertion cost is lowest when larger grid
cells are used. This is because without space partitioning tree,
an insertion needs to be compared with the representative user
in each grid cell. With the aid of space partitioning tree, an
insertion only needs to compare with one grid cell at each
level of the space partitioning tree, which significantly reduce
the insertion cost. In addition, the larger grid cell also helps
reduce the insertion cost. Recall that a user’s location near
the border of a cell will be included in the neighboring cell as
shown in Figure 3. When the size of a grid cell is large, there
are fewer such borderline cases, and hence fewer insertions
for each user.

Figure 9 shows the corresponding query performance under
the same three settings. The query cost is measured using the

12

Figure 9: Effect of Space Partitioning on Query Performance

average CPU time of 100 queries. Observe that the query
performance is better when the grid cell size is smaller. This
is because the query process compares the patient’s trajectory
with the trajectories in the grid cells that the patient is located.
The larger the grid cells, the more candidate trajectories to be
compared, and hence results in longer query time. Also, since
the query process uses only the hash table but not the space
partitioning tree as shown in Figure 5, the query performance
of the NoTree version that based on large grid cells is the
same as that of our approach using large grid cells.

5.3 Effect of Infectious Distance
This round of experiments evaluates the effect of infectious
distance which varies from the typical 6ft distance to a longer
distance of 12ft. The dataset used for testing is still the one
with 100K users and total 1.4M trajectories. Figure 10 reports
the insertion and query cost when large grid cells are used for
partitioning. The first observation is that the infectious dis-

Figure 10: Effect of Infectious Distance

tance does not affect the insertion cost much. This is because
the grid cell size is the same. The minor differences in the
performance are caused by those data points at the border of
cells. When the infectious distance is larger, there are slightly

more data points within the infectious distance to the border
and need to be included in the neighboring cells. In terms of
the query cost, there are not significant differences either. The
infectious distance has been doubled while the average query
performance is very similar. This is because the query cost is
determined mainly by the grid cell size. All the users in the
grid cell that the patient has visited will need to be securely
compared with the patient’s trajectory regardless the length
of the infectious distance.

5.4 Effect of Incubation Period

Finally, we study the effect of the incubation period by varying
it from 3 days to 14 days. The incubation period only affects
the query performance but not the insertion performance since
the space partitioning tree structure stays the same. Figure
11 shows the average query cost on the 100K user dataset
when using the large grid cell partitioning and 12ft infectious
distance. As expected, the longer the incubation period, the
higher the query cost. This is because longer incubation period
requires the query to compare with trajectories across more
days, and hence takes more time.

Figure 11: Effect of Incubation Period

6 Conclusion
This paper proposes a unique privacy preserving system,
namely PREVENT, for infectious disease contact tracing
across multiple organizations. Our system prevents any indi-
vidual party from knowing the exact locations of the users dur-
ing the whole process of tracing including location collection
and location queries. A unique hierarchical query algorithm
has been proposed to ensure real-time performance while
offering privacy protection. The experimental results have
demonstrated that the proposed system significantly outper-
forms basic privacy-preserving approaches that do not have
the data structure support as that in the PREVENT system,
and our system is scalable for handling hundreds of millions
of location data.

13

References

[1] Nadeem Ahmed, Regio A. Michelin, Wanli Xue, Gun-
tur Dharma Putra, Sushmita Ruj, Salil S. Kanhere, and
Sanjay Jha. Dimy: Enabling privacy-preserving contact
tracing, 2021.

[2] Thamer Altuwaiyan, Mohammad Hadian, and Xiaohui
Liang. Epic: Efficient privacy-preserving contact tracing
for infection detection. In 2018 IEEE International
Conference on Communications (ICC), pages 1–6, 2018.

[3] Vladimir Dyo and Jahangir Ali. Privacy-preserving
identity broadcast for contact tracing applications. 2021
Wireless Days (WD), Jun 2021.

[4] Anindya Ghose, Beibei Li, Meghanath Macha, Chen-
shuo Sun, and Natasha Ying Zhang Foutz. Trading
privacy for the greater social good: How did america
react during covid-19?, 2020.

[5] Sashi Gurung, Dan Lin, Wei Jiang, Ali Hurson, and Rui
Zhang. Traffic information publication with privacy
preservation. ACM Transactions on Intelligent Systems
and Technology, 5:1–26, 09 2014.

[6] Jian Kang, Dan Lin, Wei Jiang, and Elisa Bertino.
Highly efficient randomized authentication in vanets.
Pervasive and Mobile Computing, 44:31–44, 2018.

[7] Jian Kang, Doug Steiert, Dan Lin, and Yanjie Fu. Move-
withme: Location privacy preservation for smartphone
users. IEEE Transactions on Information Forensics and
Security, PP:1–1, 07 2019.

[8] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’20, page 1575–1590, New York,
NY, USA, 2020. Association for Computing Machinery.

[9] Wooil Kim, Hyubjin Lee, and Yon Dohn Chung. Safe
contact tracing for covid-19: A method without privacy
breach using functional encryption techniques based-on
spatio-temporal trajectory data. PLOS ONE, 15(12):1–
12, 12 2020.

[10] Jingwei Li, Dan Lin, Anna Cinzia Squicciarini, Jin Li,
and Chunfu Jia. Towards privacy-preserving storage
and retrieval in multiple clouds. IEEE Transactions on
Cloud Computing, 5(3):499–509, 2017.

[11] Dan Lin, Elisa Bertino, Reynold Cheng, and Sunil Prab-
hakar. Position transformation: a location privacy pro-
tection method for moving objects. Cyber Center Publi-
cations, 01 2008.

[12] Melika Lotfi, Michael R. Hamblin, and Nima Rezaei.
Covid-19: Transmission, prevention, and potential
therapeutic opportunities. Clinica Chimica Acta,
508:254–266, May 2020.

[13] Wouter Lueks, Seda Gurses, Michael Veale, Edouard
Bugnion, Marcel Salathe, Kenneth G. Paterson, and
Carmela Troncoso. Crowdnotifier: Decentralized
privacy-preserving presence tracing. Proceedings
on Privacy Enhancing Technologies, 2021(4):350–368,
2021.

[14] Benny Pinkas and Eyal Ronen. Hashomer – privacy-
preserving bluetooth based contact tracing scheme for
hamagen, 2021.

[15] Leonie Reichert, Samuel Brack, and Björn Scheuermann.
Privacy-preserving contact tracing of covid-19 patients.
Cryptology ePrint Archive, Report 2020/375, 2020.

[16] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, November 1979.

[17] Wenting Song, Razieh Nokhbeh Zaeem, David Liau,
Kai Chih Chang, Michael R. Lamison, Manah M. Khalil,
and K. Suzanne Barber. Self-sovereign identity and user
control for privacy-preserving contact tracing, 2018.

[18] Qiang Tang. Privacy-preserving contact tracing: current
solutions and open questions, 2020.

[19] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri,
and Dawn Song. Epione: Lightweight contact tracing
with strong privacy, 2020.

[20] Xun Yi, Russell Paulet, and Elisa Bertino. Homomor-
phic Encryption, pages 27–46. Springer International
Publishing, Cham, 2014.

[21] Can Zhang, Chang Xu, Kashif Sharif, and Liehuang
Zhu. Privacy-preserving contact tracing in 5g-integrated
and blockchain-based medical applications. Computer
Standards and Interfaces, 77:103520, 2021.

[22] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quan-
nan Li. Geolife gps trajectory dataset - user guide, Oct
2018.

14

	Introduction
	Related Works
	The Proposed PREVENT System
	Threat Model
	System Overview
	Privacy-preserving Data Transmission
	Privacy-preserving Data Storage
	Optimization of Space Partitioning
	Privacy-preserving Multi-generation Contact Tracing Queries

	Security and Privacy Analysis
	Privacy Guarantee
	Security and Ethics Problems Discussion

	Experimental Studies
	Effect of the Total Number of Trajectories
	Effect of Space Partitioning
	Effect of Infectious Distance
	Effect of Incubation Period

	Conclusion

