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Highlights
The αb TCR is a mechanosensor
whose force-dependent structural
transition and allostery regulate pep-
tide discrimination and pMHC bond
lifetime.

Application of mechanical force on the
TCR during ligand recognition pro-
motes its molecular translocation and
initiates T cell immunological synapse
formation.

Synergy of external (cell motility based)
and internal (cytoskeletal motor based)
forces supports a nonequilibrium
(energized) model for T cell activation
through reconfiguration of the αb TCR
complex at a critical force threshold.

A digital mechanosensing mechanism
defines physicochemical thresholds
with significant implications for CTL-
based vaccines and immunotherapies.
That knowledge affords new insights
relative to earlier αb TCR activation
models based on equilibrium
processes.
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T lymphocytes use αb T cell receptors (TCRs) to recognize sparse antigenic
peptides bound to MHC molecules (pMHCs) arrayed on antigen-presenting
cells (APCs). Contrary to conventional receptor–ligand associations exempli-
fied by antigen–antibody interactions, forces play a crucial role in nonequilib-
rium mechanosensor-based T cell activation. Both T cell motility and local
cytoskeleton machinery exert forces (i.e., generate loads) on TCR–pMHC
bonds. We review biological features of the load-dependent activation process
as revealed by optical tweezers single molecule/single cell and other biophysi-
cal measurements. The findings link pMHC-triggered TCRs to single cytoskel-
etal motors; define the importance of energized anisotropic (i.e., force direction
dependent) activation; and characterize immunological synapse formation as
digital, revealing no serial requirement. The emerging picture suggests new
approaches for the monitoring and design of cytotoxic T lymphocyte (CTL)-
based immunotherapy.

Biophysical Mechanism of αb TCR Triggering via an Energized Process
αb T cells specifically recognize foreign peptides displayed on infected or otherwise perturbed
cells through a process that discriminates with exquisite specificity. In so doing, T cells can
discern a single amino acid difference between two antigens. At the heart of this process is a
receptor–ligand interaction between variable domains on the αb TCR and a peptide cradled in
the groove of a major histocompatibility molecule, pMHC ([1,2] and references therein). APCs
displaying peptides at single-molecule (SM) levels can be recognized by T cells [3,4]. Equilib-
rium between a bound and unbound receptor satisfies the law of mass action and mathemati-
cally relates the relative population of species found in the bound and unbound states; the ratio
of the forward and reverse state transitions; or similarly the ratio of the state lifetimes. From an
equilibrium perspective and our basic understanding of receptor–ligand associations, one
expects high affinity. Paradoxically, however, TCR–pMHC affinities as conventionally measured
by free-solution methods such as surface plasmon resonance reveal low affinity receptor–
ligand interactions; typically in the low to high micromolar 3D affinity range.

Notwithstanding, the paradox that a mere handful of foreign peptides is sufficient for CTLs to
mount a deadly response or helper T cells to activate despite apparent weak affinity was
thought to be explained through a concept known as serial engagement [5]. Conceptualized 25
years ago, serial engagement (or serial triggering) recycles a single pMHC through multiple
sequential TCR binding events to collectively stimulate a T cell over a time period (from seconds
to hours) [6]. One ligand on an APC with intermediate affinity (KD = �1–5 mM) can thus activate
in series a multiplicity of TCRs on a given T cell where the sum of integrated receptor activation
collectively suffices to turn the T cell ‘on’ [7]. A fundamental limitation of this model is that it is not
based on direct visualization and continuous measurement of the in situ dynamic interactions
between TCRs and pMHCs at the live cell membrane. Instead it utilizes downregulation of TCR
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Glossary
Allostery: protein structural change
induced by binding of a substrate or
other effector at a site (allosteric site)
other than the chemically active site
of the protein.
Atomic force microscopy (AFM):
a form of scanning probe
microscopy where a cantilever with a
tip is systematically scanned and
poked onto a sample (biological) to
produce deflections that measure
forces between the tip and sample.
AFM’s work in the range of 10 pN–
100 nN.
Biomembrane force probe (BFP):
a technique that uses deformation of
a membrane structure such as a lipid
vesicle or red blood cell (RBC) under
tension as a sensitive and adjustable
force sensor. The RBCs are usually
functionalized (e.g., biotinylation),
with a stimulatory/interacting bead at
one end and a suction micropipette
at the other end. The measured
forces can be ranging from 0.01 pN
to 1 nN.
Catch bond: a bond for which
lifetime increases with applied force
up to a maximum, optimal force, and
then decreases with greater applied
force.
Functional avidity: T cell activation
threshold measured as the
concentration of peptide ligand
required to trigger cytokine
production, cytolytic activity, and/or
proliferation of monoclonal or
polyclonal T lymphocytes. It is
thought to reflect affinity of the TCR
for pMHC, expression levels of TCRs
and co-receptors and cellular
distribution and quantities of
signaling molecules associated with a
T cell.
Immunological kinapse: an
unsymmetrical pattern akin to IS
generated in a mobile T cell–APC
contact during immunosurveillance,
leading to T cell activation.
Immunological synapse (IS): a
cytoskeletal structure resembling a
bull’s eye forms at the interface
between a lymphocyte and a pMHC
surface array usually in an
experimental schema such as a
glass supported planar lipid bilayer.
Typically, with the IS there is
formation of a central TCR–pMHC
cluster (cSMAC) surrounded by a
ring of adhesion molecules (pSMAC)
and a distal ring (dSMAC) that
copy number as a parameter of TCR occupancy, assuming reutilization of one pMHC by many
TCRs over a period of hours [8].

T cell activation is an energized, nonequilibrium process. Physiologically, T cells patrolling
lymph nodes or inflamed tissues are highly mobile [9]. The polarized cells exhibit directed
motion with frequent stops and turns, where, from such global motions, the underlying
adhesions experience local stress and directional physical force [10]. Cellular structures such
as lamellipodia andmicrovilli at the leading edge will facilitate T cell activation [8,11,12] as well
as a scanning trajectory that promotes local exploration of the microenvironment to find strong
antigenic stimulation [13]. Later, T cells cluster their TCRs in the uropod (seeGlossary), which is
central to the cell and associated with actin retrograde flow[34_TD$DIFF](RF) [14,15]. Collectively,
immunosurveillance-based cell crawling, [35_TD$DIFF]microvilli protrusion and cytoskeletal movements
can generate forces ranging from pN to nN [16–18], as shown in (Figure 1A).

After TCR activation, a structure known as an immunological synapse (IS) on stationary cell
interaction or [36_TD$DIFF]an immunological kinapse on motile cell interaction is formed [19]. Internal
forces associated with these structures can be directly visualized by traction force micros-
copy (such as deformation of underlying elastic substrate or PDMS pillars) [20–22] or by signal
changes in tension gauge tethers (TGTs) (such as DNA/peptide force sensors) that open
under nominal threshold forces to emit a fluorescent signal (Figure 1B) [23]. Technologies for
applying external force and monitoring local stiffness include atomic force microscopy
(AFM) [24], biomembrane force probe (BFP) [25–27], optomechanical actuator nano-
particles (OMA Nps) [28], and optical trap/tweezers (OTs) among others (Figure 1C)
[29,30].

Suchmethods increasingly refine the link between TCR–pMHCbinding and activation in a way to
make probing serial engagement feasible. Using traction forcemicroscopy, no evidence for serial
engagementwas found [31] but later invoked to explain an active feedbackmechanism for early T
cell activation that globally modulates TCR–pMHC binding [32]. In recent papers about BFP [27]
andAFM [24], serial engagement, through repeat pulling onTCRs, is suggested tobe required for
T cell activation. Collectively, these advances failed to afford an unambiguous conclusion.

With increasing spatiotemporal resolution among the spectrum of SM force spectroscopy
techniques [33] (in particular through OT-based methods [34], as shown in Figure 2A), direct
testing of molecular association, structural transition, and bond lifetime of receptor–ligand
interactions and characterization of binding, unbinding, and rebinding events is possible. An OT
is formed by tightly focusing a laser beam typically to a diffraction-limited micron-sized volume
[35]. If a tiny object such as a micron [37_TD$DIFF]-sized plastic bead is near the focus, it is moved by light
entering and exiting this region in a way that pulls it towards the central axis of the laser beam.
OTs effectively represent a light-based ‘pick and place’ tool for manipulating small objects. If
one moves the laser, one moves the trapped object. Using position-sensing systems akin to
super-resolution methods, one can determine the center location of an object to nanometer
level precision.

The manipulation ability of tweezers paired with the ability to directly visualize in situ dynamic
interactions makes directly testing serial engagement mechanisms now feasible. Beads that
mimic APCs are coated with pMHCs at known molecular densities. By directly labeling the
pMHCs and using SM fluorescence imaging of these beads one can explicitly visualize the
molecular density. Beads are then trapped and transported to a surface-bound cell where
TCR–pMHC associations are actively facilitated. In Feng et al. [29], we systematically monitored
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includes the activation inhibitor. This
structural is essential in lymphocyte
activation, cytokines secretion.
Microvilli: finger-shaped membrane
protrusions about 140–380 nm in
length, and 50–90 nm in diameter,
with a core of parallel bundled actin
that are involved in a wide variety of
cellular functions, including cellular
adhesion and mechanotransduction.
Optical trap/tweezers (OTs): a
form of probe microscopy where a
tightly focused laser beam is used to
manipulate mm sized particles such
as plastic beads. Forces in the range
of 1–100 pN can be applied with
exceptional position resolution, the
properties of the optical trap for
small displacements (�200 nm) are
spring-like or Hookean. When a
trapped bead binds to an object the
distribution of fluctuations (Brownian
motion) changes. Thus, one can
observe the width of the distribution
to track molecular binding and
unbinding events.
Optomechanical actuator
nanoparticle (OMA Np): a
nanoparticle that grafts ligand
functionalized thermosensitive
polymer on a gold nanoparticle.
Illumination with near-infrared light
heats the gold nanoparticle, which
leads the polymer coating to
collapse, delivering pN forces to
specific cell surface receptors with
high spatial and temporal resolution.
Retrograde flow (RF): also named
as centripetal flow, is the collective
movement of actin filaments
generally in a direction opposite to
the movement of the cell or to the
center of the attached cell. Both
actin polymerization and myosin
motors are crucial in driving
retrograde flow.
Stall force: the force required to
stop the translocation of an individual
cytoskeleton motor along its trail.
This condition occurs when the load
is equal to the maximum force motor
can exert.
Tension gauge tethers (TGTs): a
method using short DNA duplexes or
peptide as force reporters based on
their specific sequences. The
designed sequences define general
tension tolerance ranges and will
separate if tension above their
tolerance is encountered.
Unquenching of fluorophore is used
as readout. When placed within a
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Figure 1.

(Figure legend continued on the bottom of the next page.)

Characterization of Mechanical Forces Impacting T Cells. (A) Cartoon showing in vivo T cell immu-
nosurveillance (red arrow) along the surface of an epithelium or other cellular array. Note that substantial mechanical forces
are exerted by protrusion of microvilli [26_TD$DIFF][50,51] (broken red arrows) at the leading edge and the retrograde flow (broken green
arrows) due to cytoskeletal reorganization. The TCRs, initially localizing in microvilli, will be transported by retrograde actin
flow to the uropod, forming [27_TD$DIFF]an immunological kinapse with the APC. (B) Technologies for measuring and visualizing internal
force generation during immune synapse maturation at the T cell–APC interacting surface. Traction force microscopy
(PDMS pillar and lipid bilayer) and DNA force sensor are two typical methods. The detailedmethod descriptions are given in
the Glossary. Such internal forces are mainly driven by retrograde flow through reorganization of cellular cytoskeleton, as
highlighted in the purple box. (C) External force generated at the leading edge during T cell scanning APC/target cell
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loading path, this method is useful
for in situ visualization of single
molecule pulling events by
fluorescence microscopy.
Traction force microscopy: a
method for visualizing forces cells
exert on surfaces through distortions
of a deformable material. The probes
include fiducial marks such as
fluorescent beads or micropillars
made of elastic materials. Precise
forces can be calculated by
calibrating the mechanical properties
of the material or micropillar beams.
Uropod: a rear part of polarized,
motile cells crucial to maintaining cell
migration. For lymphocytes,
immunological kinapses (dynamic IS)
are usually found in this region.
the ability of T cells to activate with different numbers of pMHCs at the bead–cell interface, from
high molecular densities (nonphysiological) to SM interactions. In addition to pick and place,
binding and unbinding, an OT can be used to exert forces on an object. By measuring the
displacement of the bead from the center of the trap (DX) and multiplying this by the spring
constant of the trap k, the restoring force towards trap center is obtained (Force = k[38_TD$DIFF]�DX). The
trap stiffness is measured straightforwardly and is typically expressed in units of pN/nm.

It is this force-exerting ability that revealed an alternativemechanism for TCR activation based on
mechanosensing, as shown in the relevant experiment in Figure 2B. Pioneeringwork byKim et al.
demonstrated that T cell activation could be achieved when subjected to a low magnitude
oscillatory force in the shear (tangential) but not normal (perpendicular) direction relative to the
T cell surface [30]. Force was thought to push and pull on the TCR, permitting activation. Later, a
type of binding interaction known as a catch bond was predicted [36] and subsequently
confirmed with elegant BFP assays and OT-based measurements [27,37], as illustrated in
Figure 2C,D, left. Conventionally, force accelerates bond release through an exponential depen-
dence given by Bell [38]. Catch bonds however exhibit an increase in lifetime in the presence of
force, followedbyadecreaseathigh forces.Directmeasurementof thecatchbondwaspioneered
by the Zhu laboratory using AFM and BFP; shown elegantly in systems such as P-selectin and its
ligand [39], aswell asmanyothers.Mechanisms for suchnonlinearbonding responses havebeen
mathematically explained [40] and elaborated as force driven [39_TD$DIFF]allostery, geometry and increased
bonding at the receptor–ligand interface [41]. Catch bonds were observed for isolated SM TCR–
pMHC interactions (Figure 2A, top left) and alsodirectly on cells in an [40_TD$DIFF]singlemolecule on single cell
(SMSC)configuration (Figure2A, top right) [37].Whilecatchbondsshowan increase in lifetime, the
mathematical effect on equilibrium basedmodels is linear. Thus, it is not clear that the increase in
lifetime from catch bonds alone, which may be tenfold, can explain the observed increase in
sensitivity and selectivity among ligands, which can be many orders of magnitude [42].

In OT studies, another clue arose. A structural transitionwas observed for the αb TCRboth in SM
and SMSC assays (Figure 2D, right), manifest as an extension of the molecule under force, thus
reducing thedisplacementobserved (DX). This transitionnotonly requiresworkdoneon theTCR–
pMHCbond,but it correlateswith thepresenceofacatchbondstate [43]. Thestructural transition
likely alters the loadingpathway,changing thedistributionof forcesustained througheachbond. It
may also allosterically alter the bonding interface between the TCR and pMHC (Figure 2C).
Furthermore, as shownschematically in Figure 2E, over time the loadedTCR reversibly transitions
between compact and extended states (CSs and ESs, respectively). Structural transitions may
also impact larger assemblies including that of the TCR and its co-receptor working in tandem
during a pMHC interaction [44]. Of note, H57 Fab, an antibody fragment binding to the FG loop of
thebTCRconstant region, generally blocks theprimary transition (andsignaling), constraining the
TCR in a compact state, compared to themultiple reversible transitions observed forwild-typeαb
TCR. This force-based (energized) mechanism is by definition distinct from purely equilibrium
binding mechanisms, as compared head to head in Feng et al. [29].

Additional studies have tied external force to activation. These include: Li et al. in which a
micropipette and a shear force were associated with activation [26]; Husson et al. where
surface can be imitated by optical trap, AFM, BFP, and OMA Np methods. All the methods are based on the spring-like
features of the devices/material. With precise directional and distance control, optical traps are an ideal technology for
testing the mechanosensing properties of the TCR on a T cell surface through a pMHC coated bead. Abbreviations: AFM,
atomic force microscopy; APC, antigen-presenting cell; BFP, biomembrane force probe; OMA Np, Optomechanical
actuator nanoparticle; PDMS, polydimethylsiloxane; pMHC, peptide bound toMHCmolecule; RBC, red blood cell; TCR, T
cell receptor.
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(Figure legend continued on the bottom of the next page.)

[29_TD$DIFF][31_TD$DIFF]Mechanosensing Properties of the TCR Assessed by OT-Based Methods. (A) TCRmechanosensing
is revealed by three OT assays. SM assays use a surface-attached pMHC and an LZ-fused αb TCR to probe the lifetime of
single αb TCR–pMHC bonds. Biotin–pMHC molecules are anchored at the tip of PEG molecules through a biotin–
streptavidin–biotin sandwich system. LZ-fused αb TCR is linked to a half-2H11 (anti-LZ) antibody functionalized 1010-bp
DNA at one end. The other end of the DNA covalently binds to a polystyrene bead surface. The SMSC assay reverses the
SM architecture. A T cell expressing a specific TCR is attached on the coverslip surface. The biotin–pMHC is linked to a half
anti-biotin antibody functionalized 3500-bp DNA at one end. The other end of DNAwith dig tag binds to an anti-dig coated
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pushing and pulling with a BFP activated cells [25]; Hu and Butte where T cells were triggered
by a pMHC-functionalized AFM tip [24]; Liu et al.where catch bonds were observed and repeat
pulling on the apical tip of T cells activated them [27]; and Liu et al. where OMA [41_TD$DIFF]Nps were used
to stretch cell surfaces, leading to activation [28]. Here we outline results involving mechanical
measurements. These findings reveal that force enhances the sensitivity of T cell activation and
that the direction of force differentially distributes load on individual TCRs, impacting the
signaling requirements of pMHC copy number on APCs (Box 1).

Regular Steps Linked to Actomyosin Machinery Rather than TCR Serial
Engagement
Cell motions derive from underlying cytoskeletal elements and associated motor proteins. The
major structural cytoskeletal elements are polarized filaments of actin andmicrotubules and their
associated motors including myosins and kinesins plus dyneins, respectively [52]. Motion and
forces can originate directly from these structures through polymerization and depolymerization
processes and directed flow associated with building and recycling the cytoskeletal elements.
Displacement can also arise fromdirectmotion ofmotorswalking on their cytoskeletal tracks. SM
assays have reconstitutedmotility in isolated assays revealing direct stepping, length of stepping
(or processivity), and stall force and rupture properties of the individual motors [53]. A range of
cytoskeletal- and motor-disrupting drugs are available to test the origins of such motion. In fact,
vigorous movements during early activation prior to IS formation has been observed by many
groups [21,24,54–56], also including by visualization through lattice light sheet microscopy [15].
Actin polymerization and non-muscle myosin IIA contraction have been found to drive a rapid
inward translocation of TCR microclusters only during the early stage of signaling due to the
potential transient linkagebetweenTCRmicroclusters to theunderlyingcentripetalactinflowin the
distal super molecular activation complex (dSMAC) [57,58]. At later activation stages, TCR
microclusters are continuously moving inward across the proximal SMAC (pSMAC) with the help
ofbeingsweptbetweenadjacentactomyosinarcsataslowervelocity than that indSMAC[59–61].
Compared to the SM tracking of internal force, active external force measurement on T cells
requiresfirmlyattaching thecell to fix its frameof reference relative to the forceprobe. Thegoal is to
createa system thatmimics aT cell crawling ona surfacewhile permitting spatiotemporal sensing
of these tools to interrogate the mechanobiology involved. With a T cell firmly attached on the
coverslip, or held in amicropipette, onecanmonitorbondingeventsunderpinningTCRactivation.
Thesuper-resolution capabilities of tweezers position sensing has revealed that TCR–pMHC
bonding is associatedwith activemotor-based transport. In addition, traces show discrete steps
polystyrene bead. (B) The SC assay uses a pMHC-coated bead [made through biotin–streptavidin (SA) interaction] to bind
the TCR on the T cell surface. The bead surface is then saturated with bBSA to prevent nonspecific binding. A pMHC-
coated bead is placed on the waist of the surface attached T cell. Directional force (shear or normal) is generated bymoving
the stage to a certain displacement. Quantification of the interfacial pMHCs is performed by TIRF. (C) A slip bond without
the potential to allosterically change the receptor conformation is destabilized by applied force. By contrast, force exerted
on an optimal ligand facilitates the receptor structural transition and αb TCR ligand interfacial complementarity to deliver
additional binding energy that stabilizes the bond thus creating a catch bond. (D) Catch bonds are observed for agonist
(VSV8) and weak agonist (L4) but not nonagonist (SEV9) upon interaction with the N15 TCR, representative of those
expressed on CD8 T cells specific for the vesicular stomatitis virus. Specifically, the TCR ligated by H57 Fab, an antibody
that directly interacts with the FG loop of the TCR Cb region, increases catch bond lifetime �10 times at optimal force.
Bond lifetime is defined as shown, namely the time between the force ramp when force is applied and bond rupture.
Structural transition (�10 nm at 15 pN) is visualized during the lifetimemeasurement as amolecular extension/alteration so
that the bead begins to return to the OT center. DX denotes displacement of bead out of the center of the trap. (E)
Reversible structural transitions of a single molecular αb TCR–pMHC interaction are seen under 10–15 pN. This is
depicted as the extension and releasing of a spring-like TCR under a trapping force as visualized in a single continuous
recording. Strikingly, a clamped compact state is observed for an H57 Fab-clamped αb TCR under the same force
magnitude. Abbreviations: bBSA, biotin–BSA; CS, compact state; dig, digoxigenin; ES, extended state [32_TD$DIFF]; LZ, leucine zipper;
PEG, polyethylene glycol; pMHC, peptide bound toMHCmolecule; SA, streptavidin; SMSC, single molecule on single cell;
TCR, T cell receptor; TIRF, total internal fluorescence microscopy.
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Box 1. Internally Generated Force, Externally Applied Force and Direction-Based T Cell Activation

Internally Generated Force Activation

Activation occurring passively through forces native to the cell generally refers to the methods shown in Figure 1B in
main text, where forces arising from internal cell cytoskeleton motions activate T cells. Such forces are monitored and
quantified by force sensors on the coverslip surface [45] or deflection of pillars [20,21]. However, higher local pMHC
density and nN force magnitudes typical of these assays have masked direct elucidation of the molecular associations
underpinning activation. Estimates based on the total force and local pMHC density suggest each TCR sustains tens of
pN. This force threshold (10–20 pN/TCR) for T cell activation has been observed in the recent publications by the
molecular tension fluorescence microscopy [23]. In OT experiments without external applied force, activation requires
higher local pMHC density and exhibits large beadmotion due to the transport via cytoskeletal machinery where internal
forces are likely contributing to activation.

Externally Applied Force-Based Activation

By contrast, force can be applied actively. There are two classes of large forces applied over many molecules and
precision forces applied through a few or individual molecules. External forces can be applied to probe the triggering
mechanism of individual cells or single receptor–ligand complexes, serially, one bond at a time. With force applied
through the OT at 10–20 pN/TCR, cells are able to be activated with as few as two TCR–pMHC interactions at the
interface [29]. This is strong evidence that the TCR harnesses a force-based mechanism for triggering.

Direction-Based Activation

A T cell scanning an APC features highly organized cytoskeletal structures such as leading edge, uropod, and microvilli.
Measurements of activation have largely focused on force applied normal or in shear directions relative to the generally
spherical cell surface. How these forces interface with the underlying microstructure and distribute their loads across
bonded TCRs impacts activation. The direction of force application significantly impacts cell functions [46]. Microvilli
present on the T cell surface may apply shear force when scanning the APC [11,47], facilitating TCR triggering. In OT
experiments on single cells a preference for force applied in the shear direction versus normal direction was observed. In
these assays the pMHC-coated bead is placed at the waist of the T cell, far away from the cell coverslip adhesion site
where abundant microvilli exist [11,48]. Normal forces activate more readily with fewer pMHCs at the interface, although
shear direction favors more sustained Ca2+ flux. The specific pulling vector on the TCR–pMHC bond must take into
account the geometry relative to the cell surface microstructure and likely includes some contribution from both normal
and shear components, even in OT experiments where the bead can rotate and weak forces are utilized. In other
methods such as AFM and BFP where force magnitudes capable of distorting the T cell are applied, stretch in axes
orthogonal to the pulling or pushing directions occurs, and additional care is needed when interpreting direction with
respect to both the cell probe frame of reference andmicrostructure presentation of the TCR–pMHC bond. A T cell held
in a micropipette displays abundant microvilli [49]. BFP assays pulling normal with respect to the T cell will inherently
apply shear motions along themicrovilli. In AFM experiments pushingmay applymore shear along the tip needle in these
cases so that the correlation between the Ca2+ flux and the force magnitudes is obscured [24].
(Figure 3A).Onemight argue froma serial engagement perspective that these aredwells between
hops among different TCR molecules. We argue here that this is not the case. Rather, several
observations support that the dwells are a result of motor-based transport [29], as illustrated in
Figure 3B. First, the steps are regularly spaced, suggesting motility is on an underlying track or
lattice of actin microfilaments or microtubules. Bonding is persistent. By contrast, if unbinding or
rebinding eventsweremediated via a serial engagementmechanism, thosewould producedwell
locations at random positions manifest as irregularly sized steps. Second, the steps disappear
when the cell is pretreated with myosin- or actin-disrupting drugs. Third, in the presence of H57
Fab,anantibody fragment ligating theCbFG loop [62] shown tosustainTCR–pMHCbond lifetime
[37], identical stepping profiles are observed. In the presence of H57, TCR–pMHC single bond
unbinding is virtually eliminatedor severely reduced, yet similar stepprofiles are seen. A number of
other observations clearly show that this structure is motor based. Moreover, we were able to
measure a stall force and to demonstratemotion against the trap consistentwithmolecularmotor
function. Correspondingly, for force-free experiments described above, activation using high
numbers of pMHC molecules (2 � 104[33_TD$DIFF]) per bead also showed displacement for triggered cells
through internal cell cytoskeletal motions [29].
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Implications of Triggering Seen at Very Low pMHC Number
Withamere twomoleculesat the interface,wecandirectly visualizebindingandunbindingevents.
Both lowering the pMHC concentration on the bead and pulling it away from the T cell surface
should reduce any rebinding probability for serial engagement mechanisms. Yet, a higher
probability of triggering was seen with normal pulls than tangentially applied forces with an
extreme 2 pMHC molecules/interface (Box 1). From a mechanosensor perspective, lowering
thepMHCconcentrationat thesolidbeadsurface increases thedistributed forceperTCR–pMHC
bond, increasing the probability that the system will be mechanically activated (structurally
transitioned). In the native system, T cells crawl on the APC surface where increased peptide
dose leads to increased activation. Local microvillus protrusions at the interface can efficiently
mechanically activate many TCR–pMHC pairs producing large signature signals characteristic of
these systems [47]. In the SM system, rather than discrete bound and unbound states expected
for serial engagement mechanisms, we observed sustained attachment of TCR–pMHC bonds
under load. At the SM level (0.5 pMHC/interface), the abrupt bond rupture between single TCR–
pMHC interaction permits bead snap-back to the trap center. Such immediate bond breaking
withoutproductiveserial turnoverwasalsoseenwhenusingaweakagonistpMHC(L4/Kb) forN15
TCRandhigh coatingdensity close to the totality of self-pMHCmolecules onanAPC. L4differs at
only the p4 residue from VSV8, the cognate ligand for the N15 TCR, but manifests 10 000-fold
lower functionalavidity than thestrongagonistVSV8 [42]. ThestimulationofTCRsbyL4/Kbwas
only observed at nonphysiologically high levels and with the help of external force application.
Perhaps this weak interaction is equivalent to that mediating tonic TCR–self pMHC stimulation
important for homeostatic proliferation [63]. These results cast doubt on the necessity of serial
engagement in early T cell activation, even when weaker ligands are involved, contrary to the
conventional serial engagement predictions [5]. Furthermore, the calcium flux induced here
(�3.5 min) by force-facilitated TCR triggering suggests they are sufficient for inducing down-
stream biological outcomes. It has been shown that with �90 s calcium flux a CD4+ T cell can
induce interleukin-2 production by a single pMHCmolecule [4], whereas CD8+ T cells require�3
pMHCs with �20% calcium increment to induce cytotoxic function [3].

TCR Mechanosensing Initiates Formation of ISs
TCR activation must deal with a broad range of APC surface topologies arraying pMHC
molecules. An outstanding question is whether IS formation is an artifact of the assay confined
to a 2D planar surface or a geometry required for subsequent TCR activation. The two-bead
experiment with one bead containing pMHC molecules and a second, nontrapped bead
coated with a nonactivating anti-CD3 monoclonal antibody (mAb) provides direct evidence
that force is the initiator of the IS (Figure 3C). During the internal force-induced activation by the
first bead displaying 2 � 104 interfacial pMHC molecules, pMHC-unligated TCRs detected by
the second bead are recruited into the activation site, initiating formation of the IS. The initial
force-induced TCR binding thus may drive intracellular signals to locally activate the actin
cytoskeleton. Combined with the active transport exhibited in force-induced activation, non-
triggered TCRs are recruited by motor-driven coupling during the maturation of IS. Note this
process occurs in seconds, consistent with recent super-resolution data for CTLs [15].

Nonequilibrium Mechanosensing Activation Provides a Sensitivity Gain
Factor Consistent with αb TCR Performance
Equilibrium and nonequilibrium processes relate to serial engagement and mechanosensing
mechanisms, respectively. Energetically, an equilibrium process is driven by thermal fluctua-
tions (thermal energy kBT = 4.3 pN�nm) where the system can freely move between states and
the relative lifetimes of bound and unbound states (or equivalently population of states or ratio of
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forward and reverse rates) determine the distribution through a simple mathematical ratio. By
contrast, what matters in a nonequilibrium system is whether a process has the required energy
to surmount a barrier (Figure 3D, left). Instead of relating proportionally to lifetime, this
probability of transiting a barrier is exponentially related to energy driving the process (i.e.,
Arrhenius activation energy). Howmuch energy is associated with TCR–pMHCmechanosens-
ing? Work with units of energy is the product of force and displacement in the direction of the
force. The TCR–pMHC conformational change is on the order of 10 nm with a force of�15 pN
representing�150 pN[42_TD$DIFF]�nm of work. If we relate this to thermal energy (kBT) this is 37 kBT, which
is greater than the energy available from thermal fluctuations of the system. In fact, it is close to
twice the energy gained from hydrolysis of ATP (1 ATP = �20 kBT). Under equilibrium, we
expect �kBT worth of energy to be driving such a process. Thermal fluctuations can impart
energy, but, based on these calculations, not nearly enough energy to drive the transition
commensurate with observed T cell sensitivity, which has been found to be 1000–10 000 times
better against its agonist versus an endogenous peptide [42,64]. Under a nonequilibrium
process, the reaction rate is linked to the Arrhenius equation, in which the ratio of available
energy to [43_TD$DIFF]kBT exponentially impacts the reaction rate value. If a quarter of the work energy
exchanged from a single transition is transduced (through an activation barrier) into the T cell,
the gain is massive, 10 000-fold or �4 orders of magnitude relative to an equilibrium driven
process. Although catch bonds create an increase in lifetime, this factor (whichmay be 10�) will
only shift the equilibrium by a similar factor, which is not enough to explain the huge sensitivity
disparity seen among peptide discrimination, which can be explained through nonequilibrium
activation. It has been noted that the conformational change is reversible, providing multiple
opportunities to deliver energy for activation. The window for triggering T cells shows that a
force close to this threshold for conformational change is required for activation (Figure 3D,
right). We have observed if one hovers near the critical force, reversible transitions are possible.
In the original anisotropic mechanosensing studies, an oscillatory force was applied that may
have created a scenario where multiple transitions were possible [30]. BFP assays require
repeat pulling for activation [27]. AFM experiments in the absence of actin show triggering with
oscillatory motion of the probe tip [24]. The TCR appears to derive power from the cellular grid.
Allowing for repeat conformational change may be an advantage in activating TCR complex
components.

Force Feedback Maintains the TCR–pMHC Bond in a Sweet Spot Where
Consecutive Conformational Change Occurs
The relative position of the T cell, including underlying cell movement during tissue scanning
and its surface αb TCR with respect to pMHC on the APC determine how fast the bond is
loaded (Figure 3E). Thus, presence of a robust actin cytoskeleton before IS formation is
expected, especially for a cell undergoing surveillance, as was observed by the recent lattice
light sheet microscopy [15]. Interaction between the TCR and F-actin in this early state provides
the substratum for mechanically actuating the TCR–motor–actin system [57]. It is interesting
that cells that trigger show motor-driven displacement of the bond parallel to the pull direction
such that tension is reduced (Figure 3B,E). This motion effectively decelerates the loading rate
and maintains the bond in the sweet spot (near critical force) for conformational change akin to
the control system in a ‘Segway’ (Figure 3E, middle) once the desired balance (force threshold)
is reached. Force feedback may be important for facilitating signal activation by amplifying the
amount of energy delivered to the system by controlling the amount of time that the TCR–
pMHC bond is near the critical force. Consistent with this notion, a recent AFM publication by
Butte’s group also gives a hint for the sweet spot [24], in which the elasticity of the dynamic cell
membrane may maintain force in the sweet spot [65].
Trends in Immunology, August 2018, Vol. 39, No. 8 605



TCR Complex Reconfigures through a Process Akin to Phase Transition
These experiments reveal a nonequilibrium metamorphosis of the TCR upon activation. In this
regard, the αb TCR is a squat but wide multisubunit protein complex composed of a disulfide-
linked αb TCR heterodimer flanked by three sets of noncovalently associated dimeric CD3
subunits: the CD3eg and the CD3ed heterodimers and the CD3zz homodimer [44_TD$DIFF][1,66–68].
Energizing this receptor system transforms the well-organized complex topology to one that
extends the centrally disposed αb TCR heterodimer, mandating additional force-directed
alterations of CD3 dimers. Such rearrangements may trigger new associations as well as
dissociations including with negatively charged vicinal phospholipids, and as a consequence,
releasing positively charged tail segments of CD3 molecules to expose [45_TD$DIFF]immunoreceptor
tyrosine-based activation motif (ITAM) for phosphorylation [69,70]. Successive extension
and retraction of the αb TCR as observed in our single αb TCR–pMHC traces [43] will further
energize the complex and lipid bilayer to mandate additional conversions much like an agitator
in a washing machine. Given interdigitation of juxtamembrane segments and interacting of
transmembrane segments and surrounding lipids, it is inescapable that force will transduce
biochemical changes from ectodomains through linkers, transmembrane segments, and the
cytoplasmic tails (reviewed in [69]). Such blossoming changes in the organization are akin to a
phase transition where a solid-like well-organized crystalline system is fluidized and reconfig-
ured asmechanical programs drive formation of structures such as the IS. Phase transitions are
associated with exchange of energy. Moreover, the underlying kinase pathways can further
amplify the initiated mechanical signaling via their phosphorylation cascades.

Comparison of αb TCR Mechanosensing with Prior Models of TCR-
Mediated Activation
Since the T cell signaling cascade begins with TCR–pMHC ligation, myriad TCR triggering
models have been proposed over the years. These include the serial engagement model noted
above, TCR oligomerization/aggregation, TCR conformational change models, kinetic proof-
reading concepts including co-receptor synergy, signaling amplification models involving
endogenous pMHC, and the kinetic segregation model (reviewed in [71,72]). While artificial
aggregation of TCRs by pMHC tetramer or antibody is sufficient for triggering the T cell
activation cascade, the frequently low density of foreign pMHCs on infected or transformed
cells ([73] and refs therein) casts doubt on the physiological relevance of massive clustering.
Crystallography studies to date have provided some evidence for discrete TCR conformational
change upon pMHC ligation, but those data are confounded by the potential for crystal lattice
artifacts [71]. Moreover, crystal structures are generated in the absence of physical load, and
therefore unable to reveal the key transitions required for catch bond formation involving
dynamic conformations that are force driven [43]. Kinetic proofreading as well as signal
amplification by endogenous pMHC models are suggested based on off-rate difference
between agonist-pMHC and self-pMHC measured by surface plasmon resonance under
force-free conditions. With respect to kinetic proofreading, the notion is that small differences
among receptor–ligand pairs can be amplified differentially by several downstream compo-
nents in a signaling pathway. However, recent OT and BFP experiments clearly show the
enormous amplification of such minor differences through mechanical force application in a
range observed physiologically [27,37]. The importance of nonequilibrium binding for T cell
function is exemplified by elegant studies involving design of superphysiological (i.e., very
strong) TCR affinity under zero force that nonetheless paradoxically yielded reduced functional
T cell activation [7]. Mutations in [46_TD$DIFF]complementarity determining regions (CDRs) that create the
αb TCR superphysiological binding at zero force could readily impair αb TCR conformational
change under nonequilibrium binding that is important for biological recognition of antigen
fostering downstream signaling.
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Outstanding Questions
Is the TCR–pMHC bond lifetime force
curve a key indicator of TCR quality
linked to protective biology as
opposed to conventionally measured
functional avidity or tetramer staining?

From the molecular perspective, how
does force-dependent transition in the
αb TCR heterodimer influence the
quaternary structure of the αb TCR
complex and conformations of the
CD3 cytoplasmic domains to initiate
signaling?

What is the structure of the extended
and force-loaded relative to the com-
pact and unloaded αb TCR complex?

Can adhesion molecules stabilize a
single TCR–pMHC bond to facilitate
T cell activation in a digital manner?

What is the precise molecular identifi-
cation of the biochemistry, physiology,
and associated protein interactions of
the motor protein activated by TCR–
pMHC bond formation?

On the APC side, how does viscoelas-
ticity of the pMHC embedded in the
membrane affect the TCR mechano-
sensing and force-induced T cell acti-
vation? Is this altered when dendritic
cells go from an immature to a mature
state?

How does the mechanical force
applied on the TCR–pMHC interface
initiate the actomyosin activity?
Kinetic segregation has been widely invoked in consideration of T cell activation and has also
been observed in a reconstituted system [74]. Within the IS, the large ectodomain of the CD45
phosphatase relegates it to the dSMAC separated from the central SMAC (cSMAC) where TCR
and pMHC and kinases such as Lck come to reside. This process can be modulated by
genetically modifying the molecular size of SMAC proteins [75]. However, elongation of pMHC
on the APC can disadvantage physical force generated from T cell crawling and/or retrograde
flow, hindering T cell activation. Importantly, kinetic segregation cannot explain why a trans-
genic TCRwith a CbFG loop deletion expressed at similar copy number to a wild-type TCR fails
to negatively select thymocytes in vivo or trigger mature T cells unless, in the latter case, antigen
concentration is increased by orders of magnitude. Collectively, these data suggest that kinetic
segregation is a means to amplify TCR triggering rather than to initiate it.

Concluding Remarks
Elucidation of T cell mechanobiology principles makes it clear that the targeting of viral or tumor-
specific antigens need not exclude candidates expressed at relatively low copy number per cell,
assuming potent αb TCRs are elicited via vaccination or arise naturally. Likewise, there is no
requirement for TCRs with a fast off-rate to foster serial engagement. As physical force tunes αb
TCRrecognitionacuity, TCRsmanifesting1–10-sbond lifetimesgenerally areefficacious to foster
TCRactivation.That said, the ligandbindingapproachvector is important in the force transduction
process [29,30], likely linked to requisite conformational changes in the TCR complex ectodo-
mains and transfer to transmembrane and cytoplasmic domains coordinated with changes in
vicinal lipids. ImmunotherapeuticsbaseduponnativeαbTCRaswell aschimeric antigen receptor
transduction into autologous T cells can be examined by OT methods described herein for
optimization of ligand triggering.Moreover, with regard to immunemonitoring, given that ELIspot
and tetramer technologies bypass external force application to assess the quality of the TCR–
pMHC bond, it is not surprising that such assays may fail to identify key biomarkers of clinical
outcomeand/or vaccine responsiveness.WhenELIspotand relatedmethodsareused toquantify
cytokine production, stimulation by antigen generally usesmicromolar concentrations of peptide.
Thisconcentration iswell above thephysiological rangeand fostersTCRcrossreactivity that is less
likely to be observed at peptide concentrations in the nanomolar to picomolar ranges [67]. [47_TD$DIFF]While
there aremultiple outstanding questions remaining to be answered (seeOutstandingQuestions),
implementationofmechanobiologyprinciples in assessing T cell adaptive recognition should bea
game changer in the field.
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