Skip to main content

Deepak Balasubramanian

Post-doc, Pharmacology


M.S. Microbiology, Madurai Kamaraj University, India

Ph.D. Molecular Microbiology, Florida International University, Miami, FL; Advisor: Dr. Kalai Mathee

Research Fellow, Harvard Medical School, Boston; Advisor: Dr. Stephen Lory

Research Description

Deepak worked in the lab from August 2017 to June 2018.

 

PREVIOUS PEER REVIEWED PUBLICATIONS

 

 

Dhar S, Kumari H, Balasubramanian D, and Mathee K. 2017. Comparative analyses of cell-wall recycling and antibiotic resistance mechanisms in Escherichia coli and Pseudomonas aeruginosa. Under peer review.
Zincke D, Balasubramanian D, Silver LL, and Mathee K. 2015. Characterization of a carbapenem-hydrolyzing enzyme, PoxB, in Pseudomonas aeruginosa PAO1. Antimicrobial Agents and Chemotherapy. 60(2): 936-945.
Caille O, Zincke D, Merighi M, Balasubramanian D, Kumari H, Kong K-F, Silva-Herzog E, Narasimhan G, Schneper L, Lory S and Mathee K. 2014. Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR. Journal of Bacteriology. 196(22):3890-3902.
Balasubramanian D, Kumari H, and Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. 2014. FEMS Pathogens and Disease. 73(2):1-14.
Kumari H, Balasubramanian D, Zincke D and Mathee K. Role of Pseudomonas aeruginosa AmpR on ß-lactam and non-ß-lactam transient cross-resistance upon pre-exposure to sub-inhibitory concentration of antibiotics. 2014. Journal of Medical Microbiology. 63:544-55.
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner K.H, Dove S.L, Narasimhan G, Lory S, and Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat-shock and oxidative stress response. 2014. Nucleic Acids Research. 42(2):979-88.
Kumari H, Murugapiran S.K, Balasubramanian D., Schneper L, Merighi M, Sarracino D, Lory S and Mathee K. LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. 2014. Journal of Proteomics. 96:328-42.
Balasubramanian D, Schneper L, Kumari H, and Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. 2014. Nucleic Acids Research. 41(1):1-20.
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S and Mathee K. 2012. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS ONE. 7(3): e34067.
Balasubramanian D, Kong K.F., Jayawardena S, Leal S, Sautter R, and Mathee K. 2011. Co-regulation of ß-lactam resistance, alginate production, and quorum sensing in Pseudomonas aeruginosa.  Journal of Medical Microbiology 60:147-156.
Balasubramanian D and Mathee K. 2009. Comparative transcriptome analysis of Pseudomonas aeruginosa. Human Genomics. 3(4). 349-61.

 

BOOK CHAPTERS

 

 

Kumari H, Balasubramanian D, and Mathee K. Role of small RNAs in Pseudomonas aeruginosa virulence and adaptation. 2016. In “Stress and Environmental Control of Gene Expression in Bacteria”. Frans J. de Bruijn, Editor. Wiley-Blackwell Publishers. In press.
Balasubramanian D, Murugapiran S.K, Silva-Herzog E, Schneper L, Yang X, Tatke G, Narasimhan G, and Mathee K. 2013. Transcriptional regulatory network in Pseudomonas aeruginosa. In: Madan Babu M (ed) Bacterial Gene Regulation and Transcriptional Networks. Caiser Academic Press, UK.