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9 Abstract (~100 words): Smartphone devices have seen unprecedented technical innovation in 
10 computational power and optical imaging capabilities, making them potentially invaluable tools 
11 in scientific imaging applications. The smartphone’s compact form-factor and broad 
12 accessibility has motivated researchers to develop smartphone-integrated imaging systems for 
13 a wide array of applications. Optical coherence tomography (OCT) is one such technique that 
14 could benefit from smartphone-integration. Here, we demonstrate smartOCT, a smartphone-
15 integrated OCT system that leverages built-in components of a smartphone for detection, 
16 processing and display of OCT data. SmartOCT uses a broadband visible-light source and line-
17 field OCT design that enables snapshot 2D cross-sectional imaging. Furthermore, we describe 
18 methods for processing smartphone data acquired in a RAW data format for scientific 
19 applications that improves the quality of OCT images. The results presented here demonstrate 
20 the potential of smartphone-integrated OCT systems for low-resource environments.

21 © 2021 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
22 Agreement

23 1. Introduction
24 In 2021, there were an estimated 6.2 billion smartphone users across the globe [1]. The extreme 
25 popularity of smartphone devices has placed them at the center of technical innovation: modern 
26 smartphones are equipped with high-resolution camera systems, state-of-the-art computational 
27 and graphical processors, a wide array of electrical and mechanical sensors, powerful wireless 
28 communication capabilities and a variety of software development packages. Not surprisingly, 
29 smartphones feature widely in many contexts, including for clinical and scientific purposes, 
30 and several researchers have sought to integrate smartphone cameras into scientific imaging 
31 systems [2], [3]. For example, commercial microscopes outfitted with smartphone cameras 
32 circumvent the need for expensive scientific cameras [4], [5]. Some researchers have developed 
33 standalone devices, such as otoscopes, confocal and fluorescent microscopes and endoscopes, 
34 that leverage the portability and compact nature of the smartphone for low-resource 
35 applications [6]–[11]. Still others have used the smartphone camera for multispectral or true 
36 spectroscopic imaging and analysis in advanced biosensing applications [12]–[15]. A key 
37 benefit of smartphone integration is the ability to create more portable and affordable systems.
38 As with the aforementioned scientific applications, optical coherence tomography (OCT) is 
39 a platform technology for bioimaging that could benefit from the capabilities provided by 
40 smartphones. Recent attempts to integrate smartphones into OCT data collection and 
41 processing pipelines have focused only on using the native computational and wireless 
42 connectivity capabilities of the smartphone to process or transmit data collected by a separate, 
43 more traditional OCT system. For example, one group demonstrated web-based interactive 
44 control of an OCT system [16], showing that remote access to OCT imaging could enable 
45 advanced telemedicine evaluation of remote patient data. Another group used the smartphone 
46 as a mobile computational platform to perform deep learning-based image processing that can 
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47 analyze and display key diagnostic features from standard clinical OCT images [17], showing 
48 that smartphone integration can reduce the need for bulky computers for processing. Neither of 
49 these demonstrations has shown integration of the smartphone camera for OCT data collection. 
50 Here, we introduce smartOCT, the first smartphone-integrated OCT system to leverage the 
51 built-in components of smartphones for detection, processing and display of OCT data. We 
52 demonstrate a proof-of-concept system showing the use of a smartphone camera to capture 
53 interferometric OCT data at visible wavelengths, which overlap with the wavelength sensitivity 
54 of high-speed commercial smartphone sensors and thus can be performed without tampering 
55 with the embedded color filters. Importantly visible-wavelength OCT is a field of growing 
56 clinical significance that lacks low-cost and small form-factor options, of which smartOCT may 
57 be a promising implementation [18]–[21]. Using a combination of custom and existing 
58 smartphone applications, we perform real-time visualization of OCT B-scans and image 
59 processing directly on the smartphone.
60 With future improvements to system design and OCT technology, we believe this scheme 
61 could result in cheaper and more portable OCT devices at visible and near infrared wavelengths 
62 that can be used for clinical diagnostics in primary care suites, satellite clinics and low-resource 
63 environments.  

64 2. Methods
65 2.1 OCT system design 

66 The smartOCT system design employed a line-field OCT (LF-OCT) configuration that used 
67 the full 2D smartphone sensor to capture 2D cross-sectional images in a single frame [22]–[24]. 
68 The use of a line-field configuration removes the need for mechanical scanners and allows 
69 single-shot B-scan imaging. Similar to other visible-light OCT systems, we used a 
70 supercontinuum laser source (EUL-10, NKT Photonics) filtered to yield visible light with a 
71 100-nm bandwidth centered at 570nm. Figure 1(a) and (b) show a schematic of the optical 
72 design and photograph of the benchtop system, respectively. 

73
74 Figure 1. SmartOCT optical schematic (a) with a representative color interferogram showing 
75 the 2D spectrum from a mirror sample (top left inset). The blue box around the reference 
76 objective and mirror indicates that these components translate together. (b) Photograph of the 
77 benchtop smartOCT system.



78 The supercontinuum output was first collimated to a 4-mm beam diameter using a reflective 
79 collimator (RC04APC-P01, Thorlabs) and focused along the y-axis using a 50-mm achromatic 
80 cylindrical lens (68-161, Edmund Optics). The beam was then split into the sample and 
81 reference arms using a 50:50 beamsplitter (CCM5-BS016, Thorlabs) and focused along the x-
82 axis of the sample and reference mirror, respectively, using identical 45-mm 4x objective lenses 
83 (RMS4X, Thorlabs). The use of commercial objective lenses helped to reduce the chromatic 
84 aberration in the system, which was helpful given the broad bandwidth. The return light was 
85 sent through a unit-magnification relay using two 50-mm lenses (AC254-050-A, Thorlabs) with 
86 a 50-µm slit aperture placed in the intermediate image plane (IP1, Figure 1), conjugate to the 
87 sample and reference image planes. The slit aperture was used primarily to block extraneous 
88 reflections from lens surfaces and stray light. The relayed light was then spectrally dispersed 
89 using a 900-lpmm transmissive diffraction grating (Wasatch Photonics) with the focused line 
90 oriented orthogonal to the holographic features of the grating. The dispersed beam was focused 
91 using a 25-mm focal length lens group at intermediate image plane 2 (IP2, Figure 1). The 2D 
92 spectrum formed at IP2 was relayed to the smartphone sensor using a 4-f unit-magnification 
93 relay consisting of two identical smartphone lenses, symmetric about intermediate image plane 
94 3 (IP3, Figure 1). This setup, termed a reverse-lens configuration, has been shown to reduce 
95 distortion and minimize aberrations while imaging through native smartphone lenses [25]. For 
96 prototyping, the smartOCT system was aligned on a 12”x12” optical breadboard using 
97 commercially available optomechanics. To aid alignment and stability, a 3D printed mount was 
98 designed for mounting the smartphone to the breadboard and spectrometer optics. We found 
99 that mounting the smartphone in this way helped to reduce any potential misalignment and 

100 vibrations caused when the smartphone was in use. 

101 2.2 Smartphone selection and specifications 

102 A key consideration for this work was to couple the smartphone camera unit to the spectrometer 
103 optics in its native condition without tampering (i.e., removing components such as the lens or 
104 sensor filters or additional modification of the smartphone), as this would be helpful for future 
105 deployment in real-world environments. The main hardware considerations for smartphone 
106 selection were the number of sensor pixels, pixel size and exposure time, which impact the 
107 imaging depth, spectral sampling density and susceptibility to motion and fringe washout, 
108 respectively. 
109 We chose to use the Samsung Galaxy S10 smartphone largely because of its processing 
110 capabilities, capacity for low exposure time and availability of versatile data formats. Its Sony 
111 ISOCELL 2L4 sensor features a 4032x3024 (width x height) RGB color pixel layout with a 
112 pixel size of 1.4µm. The S10 camera unit enabled image acquisition at 30fps at full resolution 
113 with a tunable exposure time from 33.3ms – 40µs (30Hz - 24kHz) per frame. In software, the 
114 native camera app enables “pro” picture and video modes that provide access to tuning of 
115 camera features (i.e., ISO, exposure time, frame size, etc.). Notably, the usability of various 
116 features through the native camera app during video-mode acquisition is somewhat limited, and 
117 the user can only tailor certain sensor settings under predetermined modes. 
118 In fact, many commercial smartphone camera systems prioritize simplicity (for the user) 
119 over custom setting controls. This makes it difficult to control camera settings and access direct 
120 unprocessed sensor data, as one would when using a scientific camera.  Moreover, photos and 
121 recorded videos captured with smartphones are subject to several proprietary internal 
122 processing steps, such as color-space linearization and dynamic non-linear color tuning, which 
123 are intended to make photographic pictures look better and are not representative of the true 
124 color and/or intensity of the incident light [26], [27]. Moreover, images acquired through native 
125 software are compressed when saved, which can further impact the fidelity of scientific images. 
126 Fortunately, smartphones are now a major technical platform for professional media creation, 
127 which has motivated the accessibility of unprocessed image data for custom image processing. 
128 The S10 enables RAW data capture for pictures, and community-designed open-source apps 



129 have made it possible to capture RAW video data, which we leverage in this work. RAW data 
130 can be understood as any image file that contains an uncompressed image of direct sensor 
131 counts per pixel together with meta-information about the image collected from the sensor. 
132 Often the meta-information files contain information about the sensor model, color space 
133 specifications, preset calibration values (such as white balance multipliers), active area image 
134 width and height, etc. While many proprietary commercial variations of RAW data files are 
135 used, the common file format Digital Negative (DNG) has become a standard in the industry, 
136 and several software packages are available to convert proprietary file types into DNG formats. 
137 The RAW sensor data from the S10 is output as a DNG image type. For the rest of this work, 
138 we will use the capitalized term ‘RAW’ when referring to the DNG file type. In Section 3.1, 
139 we detail the importance for RAW data processing and its impact on OCT data.

140 2.3 Smartphone software

141 We implemented a software pipeline for real-time preview, RAW video capture and OCT data 
142 processing. The first component, real-time preview, was developed as a custom app using 
143 MATLAB Simulink and Android Studio. The app enables live visualization of the OCT 
144 spectrum and processed B-scans for optimization and alignment of sample images. The second 
145 component leveraged an open-source app, MotionCam, for RAW video capture. For the third 
146 component, we implemented a processing pipeline to load and process OCT data directly on 
147 the smartphone using a commercial app from MathWorks. Figure 2 shows screenshots for the 
148 apps associated with each component.

149
150 Figure 2. Screenshots of the smartOCT apps in action. Three apps are used for (a) real-time 
151 display, (b) RAW video capture and (c) RAW data processing. 

152 Real-time preview

153 The real-time preview app (shown in Fig. 2(a)) was designed to grab live image data from the 
154 native camera system, perform basic OCT processing and display a 2D B-scan to the user. The 
155 preview app was built in Simulink and deployed through Android Studio. On opening the app, 
156 the user could choose to view the direct sensor output (2D spectra) or a processed B-scan by 
157 swiping left or right on the image. During app use, the sensor data (OCT spectra) were 
158 continuously read into the app back-end as three 8-bit RGB mp4 frames, merged into a full-
159 color image (size 2280x1080 pixels) using the phone’s internal visualization process within 
160 Simulink and displayed as a full-color image. In this app, mp4 data were used instead of RAW 
161 data because neither Simulink nor the S10 camera app natively support RAW video capture 



162 (although, the S10 natively supports RAW picture capture). Nonetheless, the quality of the 
163 processed mp4 frames was sufficient for sample alignment and focus adjustment. 
164 When visualizing OCT data, the user had the option to first capture a background image 
165 that was used for background subtraction. If no image was selected, no subtraction was 
166 performed. When the app was swiped to B-scan view, an OCT processing algorithm was 
167 performed that began by subtracting the background image and separating the green channel 
168 data from the red and blue channels. The red and blue channels were then omitted from further 
169 processing to reduce computational load. We found that omitting these color channels had 
170 minimal effect on the preview quality, since the red and blue spectra were heavily attenuated 
171 in the selected wavelength range due to the Bayer filter. The green channel data were then 
172 resampled to be linear with respect to wavenumber using a calibrated polynomial function (the 
173 polynomial parameters can be adjusted within the app if a new calibration was performed). 
174 Finally, the fast-Fourier transform is performed, and the log of the 2D B-scan was displayed on 
175 the main UI.  

176 RAW video capture

177 While RAW data photography was a capability of the native S10 camera app, the app did not 
178 support RAW video capture. Thus, a freely available app called MotionCam was used for 
179 acquisition of 10-bit RAW videos of the 2D interferogram (Fig. 2(b)). The MotionCam app 
180 enabled simple tuning of camera settings such as exposure time, ISO and field-of-view (FOV) 
181 cropping. Data acquisition was initiated by physical touch of the record button or by voice 
182 command. Once captured, the recorded data were saved to the smartphone device and/or 
183 external memory directly for processing. Switching between the apps was done by navigating 
184 to a shortcut menu on the smartphone homepage.

185 RAW data processing

186 Processing of the acquired RAW OCT interferograms was done using the MatLab Mobile app, 
187 which enables the use of MatLab code loaded directly on the smartphone’s hardware (Fig. 2(c)). 
188 The processing pipeline is shown in Fig. 3, and it differs from the real-time preview app pipeline 
189 in that there are additional steps taken for intensity correction and distortion correction prior to 
190 OCT processing. 

191
192 Figure 3. Flow diagram for RAW data processing. First, the RAW OCT spectrum was loaded 
193 into the processing app. Second, RGB pixel values were scaled to compensate for the Bayer 
194 filter attenuation, yielding an intensity-corrected OCT spectrum. Third, the spectrum was sent 
195 through a distortion-correction algorithm. Finally, the corrected spectral data were run through 
196 OCT processing pipeline consisting of background subtraction, k-space linearization, dispersion 
197 compensation, Fourier transformation and log compression before being stored on local memory 
198 and/or transferred to a local or remote machine. 

199 1. Load OCT spectrum: On startup of the app, the processing script prompted the user to 
200 select the RAW dataset of interest from a folder in the smartphone’s local memory. The 
201 data were then loaded into the app as a 4032 x 1908 x N-pixel (spectrum x position x frame) 
202 RGB-mosaicked image stack. Note that the image size was automatically cropped relative 



203 to the full sensor size (4032 x 3024) when loaded to remove the inactive pixels specified 
204 in the RAW meta-information. 
205 2. Scale RGB pixel intensity: The intensity of each RGB pixel was then scaled to compensate 
206 for the non-uniform spectral attenuation of the Bayer filter. This intensity correction was 
207 accomplished by dividing each R, G and B pixel of the RAW OCT spectrum with an 
208 intensity value derived from a color-specific, normalized, spectral attenuation function (Fig 
209 4(a)). The attenuation functions were measured experimentally following methods in Ref. 
210 [28]. The result of this operation was a spectral reshaping that compensates for the spectral 
211 attenuation induced by the Bayer filter. Fig. 4(b) and (c) show three 1D RGB plots of a 
212 representative interferogram taken from the center of the FOV of a mirror sample before 
213 and after intensity correction. 

214
215 Figure 4. Intensity scaling of RGB pixels. (a) The value of each RGB pixel of the RAW OCT 
216 spectrum was scaled by dividing it by the corresponding attenuation function. Representative 
217 OCT interferogram taken from the center of the FOV of a mirror sample (b) before and (c) after 
218 intensity scaling. 

219 3. Correct distortion: The intensity-corrected data were then sent through a custom distortion-
220 correction algorithm, described below, that compensates for the distortions caused by the 
221 smartOCT imaging optics, including the additional optics associated with the OCT 
222 interferometer. In brief, a B-spline unwarping transform was used to apply the correction. 
223 4. Process OCT image: The corrected spectral image was then processed using traditional 
224 OCT methods. Background subtraction was performed, followed by resampling of the 
225 spectral data to be linear with respect to wavenumber using a polynomial function obtained 
226 via pixel-to-wavelength calibration of the spectrometer (Section 2.5). Next, the resampled 
227 spectrum was multiplied by a Hann window, and system dispersion was corrected using 
228 previously described methods [29]. Finally, the fast Fourier transform was performed, and 
229 the log of the transformed data was displayed on screen.  



230 5. Save and transfer data: The processed data could then be stored locally using the 
231 smartphone internal memory or on a local machine through wired USB-C connection. 
232 Using the MatLab app or the smartphone’s native file system, the user could also transfer 
233 data wirelessly to any local or remote device. 

234 2.4 Distortion correction

235 Extracting the distortion-correction coefficients only needed to be performed once for a given 
236 imaging configuration. The distortion correction method involved imaging a grid chart of 
237 known spacing in the sample plane and using a B-spline unwarping transform to register the 
238 measured grid with a synthesized ground truth image of the same grid [30]. The grid target 
239 (R1L3S3P, Thorlabs) had a 500-µm spacing at the focus of the sample arm. Note that because 
240 our system was designed for line imaging, a single point on the sample illumination line that 
241 was incident on a grid line resulted in a single spectral line on the sensor. To increase the 
242 contrast between the spectrum and grid lines, the grid target was placed slightly out of focus, 
243 which resulted in dark lines on the spectrum, as shown in Figure 5(a) and (b). 

244
245 Figure 5. Distortion correction of a smartOCT spectrum. (a) Unprocessed, distorted RGB 
246 spectrum of a grid chart with 0.5-mm spacing captured on the smartphone, (b) Distortion-
247 corrected spectrum. (c) Source (white) and target (red) points used for establishing the 
248 unwarping transform. (d) Original distorted OCT B-scan of Scotch tape and (e) distortion-
249 corrected OCT B-scan. The white and yellow dotted boxes correspond to the regions used as 
250 signal and background in the SCR calculation, respectively. The blue and magenta boxes 
251 represent the regions that were averaged and plotted in panel (f), which shows an averaged A-
252 scan. Scale bars are 250 µm along the positional axis (horizonal) and 50 µm along the depth axis 
253 (vertical).

254 The resulting 2D spectrum was processed by first segmenting and binarizing the individual 
255 grid lines. Then, 10 lateral positions on each binarized line, spaced 100 pixels apart, were 
256 selected as “source” point coordinates, which resulted in 70 source points (white circles, Fig. 
257 5(c)). Target “ground-truth” points (red circles, Fig. 5(c)) were identified by first selecting the 
258 centermost source coordinate (at the center of the field-of-view) and calculating the λ- and y-
259 axis pixel offset to the next closest source point. These offsets were used as the target point 
260 spacings to form a uniform grid with the same number of target points as source points. Note 
261 that this method only accounts for distortions along the y-axis (i.e., spatial distortions) since 
262 spectral distortions are compensated for during k-space linearization. Following point 
263 identification, the source points were registered to the target points using a non-linear 



264 unwarping transform (bUnwarpJ, FIJI). Next, the raw transform coefficients were saved to the 
265 calibration file and used as inputs in the main processing code to unwarp each 2D spectral frame 
266 prior to OCT processing. 
267 Fig. 5(d) and (e) show a representative B-scan image of Scotch tape before and after the 
268 correction. Notably, the surface of the tape looks similar in the central portion of the FOV where 
269 there are minimal distortions. Toward the outer edges of the FOV (left and right of center), the 
270 surface of the tape in Fig. 5(d) is significantly blurred when compared to the same region in the 
271 corrected image. To illustrate this point, the data within the magenta and blue boxes of the 
272 distorted and corrected B-scans, respectively, were averaged along the lateral (position) axis to 
273 enhance contrast and plotted in Fig. 5(f). The plots show a sharpened surface peak around the 
274 20μm depth position with a 3dB SNR improvement (boxed inset in Fig 5(f)) and overall 
275 improved contrast between tape layers. Quantitatively, we calculated a speckle contrast ratio 
276 (SCR) between the second tape layer and tape gap for both images (shown as white and yellow 
277 boxes, respectively, in Fig. 5(d) and (e)), which resulted in a SCR of 1.52 and 1.66 for distorted 
278 and corrected B-scans, respectively. 

279 2.5 Spectrometer calibration 

280 Spectrometer calibration was performed by leveraging the wavelength tunability of the 
281 supercontinuum laser source and filter unit. Using the NKT control software, the wavelength 
282 output of the source was set to a 10-nm bandwidth (the minimum bandwidth of this unit) 
283 centered at 520 nm. The source was then swept across each 10-nm sub-band in steps of 10 nm, 
284 and a RAW video (frames are averaged in processing to reduce noise) of the 2D spectrum was 
285 captured at each of 11 sequential wavelength values from 520-620 nm. To extract the pixel 
286 associated with each wavelength, each 2D sub-band spectrum was corrected for distortion and 
287 then fit to a Gaussian profile along the spectral axis. The pixel value corresponding to the peak 
288 location of the fit was identified and estimated as the center wavelength of that sub-band. Since 
289 the output of each filtered sub-band was inherently Gaussian, this method produced a reliable 
290 and repeatable calibration. A third-order polynomial fit was then calculated to provide a pixel-
291 to-wavelength mapping function for each row of the OCT spectral data. Notably, the mapping 
292 was not the same for each row, which relates to distortion along the spectral axis.

293 3. Results
294 3.1 Data type analysis: MP4 vs RAW

295 To evaluate the difference in mp4 and RAW data processing on the smartOCT system, we 
296 analyzed 2D interferograms of a mirror sample saved as RAW (10-bit) and mp4 (8-bit) data 
297 types. Each image was acquired at an exposure time of 1/8,000 sec., an ISO of 50 and 1x 
298 magnification. The smartphone’s autofocus feature was disabled and set to a consistent value 
299 for all acquisitions. Figures 6(a) and (b) show the RGB components from a row at the center of 
300 the FOV of the OCT interferogram for the two data types, respectively, with the black dotted 
301 box showing a zoom-in of the blue and red channels. 



302
303 Figure 6. Plot obtained from the central line of each RGB channel of the RAW and MP4 
304 interferograms (a) and (b), respectively. Zoom-in regions of the blue and red channels in the 
305 dotted black box of each data type showing artificial cropping of the MP4 data at zero intensity 
306 due to the smartphones internal processing. OCT B-scans of the mirror sample (c-d) from the 
307 full RAW data and mp4 data. A-scan from the central line of the RAW and mp4 B-scans 
308 (magenta and blue dotted lines, respectively) showing the presence of artifacts through the full 
309 depth of the A-scan. Scale bars are 100 µm along the positional axis (horizonal) and 25 µm along 
310 the depth axis (vertical). 

311 The zoomed in regions show a significant difference in spectral shape and intensity values 
312 between the two data types. Importantly, the mp4 spectra contain zero-valued data points where 
313 the interferogram was effectively cut off after the smartphone’s internal processing. This occurs 
314 because the internal processing imparts a non-linear color scaling that adjusts colors fit the 
315 color space of commercial displays and make colors more aesthetically pleasing to the human 
316 eye. For scientific data, however, this scaling can lead to incorrect image content or 
317 misinterpretation of data. When processed as OCT data, the zeroed regions of the spectrum 
318 result in ringing artifacts akin to saturation artifacts commonly seen in OCT data. To highlight 
319 these effects, Figure 6(c) and (d) show processed B-scans of the mirror sample from the RAW 
320 and mp4 data, respectively. The RAW B-scan shows a typical OCT signal from a mirror peak, 
321 including a single sharp peak and uniform speckle background, while the mp4 data contains 
322 significant artifacts throughout the full depth of the B-scan. Figure 6(e) shows a comparative 
323 A-scan plot taken from the magenta and blue dotted lines of the RAW and mp4 B-scans, 
324 respectively. In our experimentation, the artifacts seen in the mp4 B-scan were more 
325 pronounced in highly reflective samples, but present in most test cases, including scattering 
326 samples. 

327 3.2 Resolution and sensitivity characterization 

328 We characterized the performance of the smartOCT system by measuring its sensitivity, SNR 
329 falloff, and lateral and axial resolutions. The system sensitivity was measured by illuminating 
330 a mirror placed in the sample arm with 10mW of power spread laterally across 1000 pixels. 
331 The sample illumination was then attenuated using an OD-2 absorptive neutral density filter. 
332 Considering the gaussian intensity profile created by the cylindrical lens, we estimated the peak 
333 intensity to be 40μW at the central field point. Using an exposure time of 1.25ms, the theoretical 
334 sensitivity was 93dB, and the obtained peak sensitivity was 84dB [31]. 
335 Next, the sensitivity falloff was evaluated by translating the reference mirror over a depth 
336 of 500μm in 50-μm increments. The measured 6-dB falloff point was ~260μm, as shown in Fig. 
337 7(a). The axial resolution was measured to be 2.2μm using a mirror peak at a depth of roughly 
338 100μm (Fig. 7(b)). The 6-dB falloff point and axial resolution are worse than their theoretical 
339 values of 843μm and 1.43μm, respectively. We believe this may be due to aberrations induced 
340 by the native smartphone optics, specifically chromatic aberration, that can significantly reduce 



341 the achievable spectral resolution. Moreover, chromatic aberration has been demonstrated as a 
342 source of axial blurring in other visible-light OCT systems [21].
343 Finally, the lateral resolution was measured by imaging a USAF-1951 chrome negative 
344 resolution chart (38-256, Edmund Optics). Figure 7(c) shows a microscope image of group 7 
345 and group 6 element 1 of the resolution chart (R3L1S4N, Thorlabs) and a corresponding 
346 maximum-intensity projection of 40 adjacent B-scans and cross-sectional plot showing that 
347 group 6 element 1 (15.8 μm) is clearly resolved. The measured resolution was greater than the 
348 theoretical diffraction-limited spot of 6μm; we attribute the degradation to unknown aberrations 
349 on the transmitted spectrum associated with imaging through the reverse lens and native 
350 smartphone camera system.

351
352 Figure 7. SmartOCT performance characterization. (a) SNR falloff, (b) axial resolution (c) 
353 USAF chart group 7 and group 6 element 1 zoom-in and a corresponding maximum-intensity 
354 projection of 40 adjacent B-scans and cross-sectional plot showing that group 6 element 1.  

355 3.3 Sample Imaging

356 To demonstrate the imaging capability of smartOCT, we successfully imaged two scattering 
357 samples: Scotch tape and cucumber (Fig. 8). The data were acquired using 16mW of extended 
358 illumination on the sample and a 5-ms exposure time. 

359
360 Figure 8. Sample imaging with smartOCT system (a) and (b) raw spectral interferograms of 
361 tape and cucumber and the corresponding B-scans (c) and (d), respectively. Scale bars are 
362 150µm along the y-axis (horizonal) and 50µm along the z-axis (vertical).

363 Figure 8(a) and (b) show representative single-frame raw spectra from a roll of tape and 
364 cucumber and Fig. 8(c) and (d) show 10 and 20 frame-averaged B-scans of the same samples, 
365 respectively. The image of tape shows six layers with clear differentiation of layers over a depth 
366 of ~300 μm. The image of cucumber reveals clear cell structures. The full lateral FOV is 



367 3.5mm; however, there is notable signal reduction towards the edge of the FOV that results 
368 from the Gaussian illumination profile of the cylindrical lens and vignetting on the reverse 
369 phone lens relay. 
370 To further demonstrate the utility of our system, we imaged the anterior segment of an ex 
371 vivo porcine eye (Fig. 9). The data were imaged using the same illumination power as the 
372 previous samples with an exposure time of 1.25ms. Figure 9(a) shows a photograph of the eye 
373 with the red line showing the location where the B-scan was acquired. Figure 9(b) and (c) show 
374 a representative single-frame raw spectrum and 10-frame averaged B-scan from the corneal 
375 limbus of the porcine eye, respectively. 

376  

377 Figure 9. Sample image of ex vivo porcine anterior segment. Photograph of the anterior segment 
378 of the eye (a) with the red line showing the location of the B-scan. Raw spectrum (b) and 10-
379 frame averaged B-scan (c) of the corneal limbus. Scale bars are 150µm along the y-axis 
380 (horizonal) and 50µm along the z-axis (vertical).

381 4. Discussion
382 In this work we developed the first OCT system to integrate the native smartphone optics along 
383 with custom software to visualize and acquire 2D OCT B-scans in real time. In doing so, we 
384 demonstrate the potential utility of smartphones to replace some of the costly components (e.g., 
385 camera, scanner, computer, display) for OCT. In addition, we developed an image processing 
386 pipeline that improves imaging performance through native smartphone optics and enables 
387 high-performance scientific imaging that may be tailored for OCT or other imaging science 
388 applications. We also demonstrated the importance of using RAW vs mp4 data to yield accurate 
389 images of high quality. The smartOCT system provides several advantages compared to 
390 traditional OCT systems. Mainly, the use of a smartphone integrates several components 
391 (camera, PC, display) that are normally separate entities into a single compact device. As such, 
392 the cost is lower (<$6,000) than other comparable visible-light OCT systems, including the 
393 phone (market value <$300) and excluding the light source. Smartphones are at the center of 
394 innovation for small formfactor computational and graphical processing units, which can be 
395 leveraged for improved on-board image processing methods including machine learning 
396 algorithms and data visualization. Smartphones also provide simple and efficient connectivity 
397 to Wi-Fi and cellular networks that can be used for telemedicine applications. Lastly, the 
398 ubiquity of smartphones has led to the development of countless first- and third-party software 
399 tools that make custom application development more accessible than other portable PC or 
400 microcontroller options. 



401 The current design is a proof-of-concept benchtop system that we believe can be improved 
402 to provide a portable all-in-one smartOCT system. For example, a major limitation of this work 
403 is the use of a supercontinuum laser source, which is a common source for visible-light OCT 
404 and was helpful to ensure sufficient power for imaging. Recently, there has been progress on 
405 using broadband LED sources for visible-light OCT [32]. With additional improvements to the 
406 technology in this space, LED light sources may be viable for future smartOCT designs. That 
407 said, one limiting factor is the power throughput of the spectrometer (roughly 30%) and the 
408 camera system of the smartphone. As discussed in the methods, the smartphone sensor uses a 
409 Bayer-filter that significantly attenuates wavelengths outside of the bandpass of each RGB 
410 filter. Considering that at 550nm, the red, green and blue filters transmit 5%, 90% and 10% of 
411 the incident light, this means that an RGB super-pixel comprising one red, two green and one 
412 blue sub-pixel receives <50% of the incident light before considering the responsivity of the 
413 sensor itself. While it is possible to remove the Bayer filter, tampering with internal phone 
414 optics may be undesirable for deployment in certain contexts.
415 Alignment of the smartOCT system was another challenge, made difficult due to the small 
416 size and limited degrees of freedom of the smartphone optics. Here, we used custom-designed 
417 3-D printed parts to mount the smartphone and various components to standard optomechanical 
418 mounts; however, the number of mechanics contributes to the overall bulk of the system. 
419 Moving forward, one could use custom machined mounts and scaffolds to reduce bulk and 
420 improve alignment sensitivity. The popularity of commercial rapid prototyping has made such 
421 components much more accessible than they have been in previous years. 
422 Another potential improvement relates to the generation of 3D datasets. Our design 
423 removed the traditional mechanical scanning mirrors that conventional OCT systems use to 
424 enable B-scans and volumetric imaging. In future iterations, we plan to integrate a more 
425 compact optical system into an ergonomic design that would allow manual scanning of 
426 samples, which has been demonstrated in previous handheld OCT designs [33]. Moreover, 
427 additional sensors on the smartphone, such as the gyroscope and accelerometer, could provide 
428 useful tools to monitor the motion of the system and assist with image registration.
429 Overall, the smartOCT system compares favorably in SNR and resolution to other published 
430 visible-light line-field OCT systems that use traditional cameras and spectrometer designs [32], 
431 [34]. We believe the work presented here can be used as a foundation for future development 
432 of smartphone-integrated OCT systems. The ubiquity of smartphones, along with the 
433 continually advancing technology and their compact design offer a unique opportunity for 
434 developing OCT systems for low-resource settings. 
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