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Abstract—A 2-D matrix ultrasound array is used to monitor
acoustic radiation force impulse (ARFI) induced shear wave prop-
agation in 3-D in excised canine muscle. From a single acquisition,
both the shear wave phase and group velocity can be calculated to
estimate the shear wave speed (SWS) along and across the fibers,
as well as the fiber orientation in 3-D. The true fiber orientation
found using the 3-D radon transform on B-mode volumes of
the muscle was used to verify the fiber direction estimated from
shear wave data. For the simplified imaging case when the ARFI
push can be oriented perpendicular to the fibers, the error in
estimating the fiber orientation using phase and group velocity
measurements was and (mean standard
deviation), respectively, over six acquisitions in different muscle
samples. For the more general case when the push is oblique to the
fibers, the angle between the push and the fibers is found using the
dominant orientation of the shear wave displacement magnitude.
In 30 acquisitions on six different muscle samples with oblique
push angles up to 40 , the error in the estimated fiber orientation
using phase and group velocity measurements was
and , respectively, after estimating and accounting for
the additional unknown push angle. Either the phase or group
velocity measurements can be used to estimate fiber orientation
and SWS along and across the fibers. Although it is possible to
perform these measurements when the push is not perpendicular
to the fibers, highly oblique push angles induce lower shear wave
amplitudes which can cause inaccurate SWS measurements.

Index Terms—Acoustic radiation force, elastography, shear
wave imaging, transverse isotropy, ultrasound.

I. INTRODUCTION

S HEAR wave imaging is a promising technique for the
noninvasive quantification of tissue stiffness. Shear waves

in the body can be induced by a variety of methods, including
physiological motion [1]–[4], external mechanical excitation
[5]–[7], or acoustic radiation force [8]–[11]. By monitoring the
shear wave speed (SWS) using a real-time imaging modality
such as magnetic resonance imaging (MRI) [5], [6], [12] or
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ultrasound [7]–[11], the underlying tissue stiffness can be esti-
mated under simplifying assumptions of the tissue mechanical
properties. This technique has been used to study various types
of soft tissues, including liver [5], [7], [13]–[15], breast [16],
[17], cardiac tissue [1], [18], [19], skeletal muscle [20], [21],
artery [2], kidney [22], cornea [23], and brain [24]–[26].
Shear wave imaging in skeletal muscle presents unique

challenges due to its dynamic nature and its physical structure.
Skeletal muscle is composed of thin fibers (myocytes) grouped
together in bundles called fasciculi [27]. These fibers align
parallel to each other in a regularized pattern to form the
overall muscle. Due to this geometric structure, the mechanical
properties of muscle are different along the fibers than across
the fibers. As a result, the SWS in muscle is anisotropic, and
dependent on the direction of propagation with respect to
the fiber orientation, which confounds SWS measurement in
muscle in two ways. First, the muscle fiber orientation is not
usually precisely known in the shear wave imaging coordinate
system. Second, the usual assumption of isotropy used in SWS
based shear modulus reconstruction techniques does not apply.
Previous work in shear wave imaging in muscle includes

both magnetic resonance elastography (MRE) studies, which
use MRI for monitoring shear waves, and ultrasound-based
techniques. MRI has the advantages of being able to acquire
data in 3-D and measure displacement fields with equal sen-
sitivity in any direction. However, the long acquisition time
required (on the order of minutes) means that most MRE
studies are limited to data from a single 2-D plane of the
anatomy [21], [28], [29]. Another drawback of MRE is the
complexity of wave fields induced in muscle by the external
mechanical vibrators typically used for shear wave generation
[30]–[32], which make the reconstruction of elastic parameters
a challenging task. At present, the majority of MRE studies
measure muscle stiffness only in the fiber direction [28], [29],
[32], [33], while assessments of anisotropy are limited [21],
[31].
In comparison to MRI, the use of ultrasound for shear wave

imaging has several advantages, including short acquisition
times (within seconds), portability, reduced cost, and the ability
to generate shear waves in tissue using acoustic radiation force
with the imaging transducer [11]. Early studies in muscle with
ultrasound-based shear wave imaging were performed using
mechanical actuators for shear wave generation [10], [34]–[36],
and more recently with acoustic radiation force [20], [37].
However, like most MRE techniques, shear wave propagation
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in only a single plane can be observed using conventional
ultrasound, which form cross-sectional image slices. This limits
its ability to characterize the anisotropic properties of muscle,
which is 3-D in nature. Some studies seek to minimize the effect
of anisotropy on SWS measurements in muscle by consistently
orienting the transducer imaging plane with respect to the fiber
and limiting measurements to a single direction [35], [36]. In
other studies, anisotropy has been characterized by modulating
either the excitation source of the shear wave [34], [38], or the
position of the imaging transducer [20]. A common drawback
in these approaches is that the actual fiber orientation relative
to the imaging plane is not known precisely, and is estimated
by manual inspection of the appearance of fasciculi in B-mode.
More recently, Lee et al. [18] have shown that it is possible to
accurately estimate the fiber orientation in themyocardium from
the SWS measured in multiple directions using a transducer
mounted on a custom rotation device.
Two-dimensional matrix array ultrasound transducers are be-

coming increasingly available on the latest generation commer-
cial ultrasound scanners. In contrast to conventional 1-D ultra-
sound arrays, these transducers are capable of electronic beam-
forming in both the lateral and elevation dimensions to facilitate
3-D imaging at high frame-rates. As a result, it is now possible
to monitor shear wave propagation in a 3-D volume using ul-
trasound without the need for multiple acquisitions or special-
ized devices for repositioning and physical registration of the
probe [39]. The ability to monitor shear wave propagation in
3-D overcomes the limitations inherent in characterizingmuscle
anisotropy from 2-D images.
In this study, a 2-D matrix array is used to image shear wave

propagation induced by acoustic radiation force impulse (ARFI)
in ex vivo muscle. The SWS along and across the fibers, as well
as the fiber orientation in 3-D is measured from a single 3-D
shear wave acquisition without the need to modulate the source
of the shear wave or reposition the probe. Section II of this paper
presents a theoretical background on shear wave propagation in
muscle. Section III describes the experimental procedures used
for data acquisition, methods used for anisotropic SWS estima-
tionandfiberorientationmeasurement from3-Dshearwavedata,
aswellasevaluationofthetrue3-Dfiberorientationfromhighres-
olution B-mode ultrasound. The 3-D fiber orientation estimated
from3-Dshearwavedata is compared to the truefiber orientation
measured from B-mode in Section IV. It is shown that measure-
ment of the SWS along and across the fibers, as well as the fiber
orientation, is possible evenwhen the axis of theARFI excitation
(push) is not oriented directly perpendicular to the fibers.

II. SHEAR WAVE PROPAGATION IN MUSCLE

As illustrated in Fig. 1, the parallel arrangement of muscle
fibers give rise to an axis of symmetry along the fiber direction.
In the coordinate system to be used throughout this paper, this
axis will be assigned the three-direction ( ). The muscle me-
chanical properties are assumed to be invariant under rotation
about this axis. Thus, isotropic behavior is observed in “planes
of isotropy” (the 1–2 dimensions). In contrast, “planes of sym-
metry” parallel to this axis contain directions varying from par-
allel to perpendicular to the fibers, and display anisotropic be-
havior. This type of material symmetry can be described by a

Fig. 1. Coordinate system used for modeling muscle as a transverse isotropic
material. Orthonormal basis vectors , , and form a right-handed coor-
dinate system. Muscle fibers are parallel to the direction, which is an axis
of symmetry. Mechanical properties are isotropic within planes of isotropy per-
pendicular to this axis, whereas anisotropic behavior is observed in planes of
symmetry parallel to this axis.

transverse isotropic (TI) model of elasticity [40]. It is the sim-
plest model of anisotropy, and represents an attractive one to use
to describe the mechanical properties of muscle [34]. The gov-
erning equations for shear wave propagation in a TI material are
developed in the following subsections.

A. Wave Propagation in Transverse Isotropic Media

Wave propagation in TI materials has been extensively
studied in geophysics and crystal acoustics [41], [42]. The
wave equation in a TI material can be derived from three
fundamental relations: 1) the strain-displacement relation, 2)
the constitutive equation relating stress and strain, and 3) the
equation of motion (Newton’s second law). For compactness,
this paper will use indicial notation, where subscript indices
can take on the values 1, 2, or 3, and repeated indices follow
the Einstein summation convention [40]. Let denote the
particle displacement in an elastic medium. The infinitesimal
strain tensor is then given by

(1)

The constitutive equation for a linear elastic solid is

(2)

where is the stress tensor, and is the elasticity tensor.
For a TI material, the elasticity tensor contains only five inde-
pendent parameters and (2) can be expressed in Voigt notation
by

(3)

where and only the nonzero components are
shown. The equation of motion in the absence of body forces is

(4)



WANG et al.: IMAGING TRANSVERSE ISOTROPIC PROPERTIES OF MUSCLE BY MONITORING ACOUSTIC RADIATION FORCE INDUCED SHEAR WAVES 1673

where is the divergence of the stress tensor and is the
material density (assumed to be for muscle). The
wave equation is obtained by substituting(1) and (2) into (4)

(5)

To solve the wave equation, assume plane wave solutions of
the form

(6)

where are components of the particle displacement vector
, the angular frequency, time, components of the wave

number vector , and spatial coordinates. Due to symmetry
of the material properties about , the and directions are
equivalent and arbitrary. Therefore, without any loss in gener-
ality, we can set , and only consider wave propagation in
the 1–3 plane. Substituting (6) into (5) with yields

(7)

where

(8)

are components of a unit vector normal
to the wavefront, and is the scalar phase ve-
locity associated with the direction . Equation (7) is known
as Christoffel’s equation, and has the form of an eigenvalue-
eigenvector problem. It has three independent solutions, corre-
sponding to three different wave-modes. The direction of par-
ticle motion , or “polarization” for each wave-mode corre-
sponds to an eigenvector of the Christoffel matrix , while the
phase velocity can be deduced from the associated eigen-
value. It is clear from (8) that the phase velocity of the waves
depend on the direction of propagation , and elastic constants
of the medium. Furthermore, since is symmetric, the three
wave-modes have mutually orthogonal directions of polariza-
tion.
One obvious solution of (7) is to set and .

Doing this, one obtains

(9)

where is an arbitrary constant. The polarization of this wave
is in the two-direction, which is perpendicular to its direction of
propagation (the 1–3 plane). Thus, this mode corresponds to a
pure shear wave. Equation (9) can be rewritten as

(10)

where is the angle of wave propagation
with respect to the fibers in the propagation plane.
Since the three wave-modes have mutually orthogonal direc-

tions of polarization, the other two modes are obtained by set-

Fig. 2. Phase and group velocity measurement for a wave emitted from a point
source in an anisotropic medium. Phase velocity direction ( ) is always per-
pendicular to the wave front, and its magnitude ( ) corresponds to how fast
a plane wave would travel in that direction. The group velocity is measured
in the direction of the ray from the source to the observer ( ). Its magnitude
( ) corresponds to how fast a wave packet consisting of plane waves in many
directions would travel in that direction. Note that the vectors on this diagram
indicate directions only and are not drawn to scale.

ting in (7). Their polarizations lie within the plane
of propagation (the 1–3 plane). The expressions for the phase
velocities of these two modes are algebraically complex, and
the reader is referred to [41], [42] for a detailed treatment. In
general, the polarization of these two wave-modes are neither
purely perpendicular or parallel to the direction of propagation.
The mode which has polarization closest to being perpendicular
is usually referred to as the “quasi-transverse” mode, the other
“quasi-longitudinal.” In this study, the generation of these two
wave-modes are minimized by orienting the axis of the ARFI
push close to perpendicular to the muscle fibers, as will be de-
scribed later. In addition, the quasi-longitudinal wave phase ve-
locity is three orders of magnitude greater than that of a shear
wave in a nearly incompressible material such as muscle, and
cannot be observed using ultrasonic imaging.

B. Phase Velocity and Group Velocity in Anisotropic Media

An important concept in anisotropy is the distinction between
phase velocity and group velocity . To understand the difference
between them, consider a point source radiating plane waves
equally in all directions in an nondispersive anisotropic medium
as shown in Fig. 2. For an observer at some arbitrary location,
one method to determine the velocity of the wave is by mea-
suring its transit time between the source and the observer, and
noting the distance between the two points. The velocity mea-
sured in this fashion is the group velocity, the magnitude of
which we will denote by (the subscript stands for ray). It
corresponds to how fast a wave packet, consisting a superposi-
tion of plane waves in different directions, would travel along
the ray direction from the source to the observer. The polar
graph of versus is known as the wave surface, and rep-
resents a snapshot of the wave at unit time excited by a point
source.
If, on the other hand, the location or timing of the source were

unknown, it is still possible for the observer to measure a speed
and a direction for the wave by comparing its arrival-times at
several adjacent locations in the surrounding local domain. By
limiting the observation of wave travel to a small region of space
in this fashion, an individual phase of the wavefront is moni-
tored. This is because on a sufficiently small scale, any wave-
front will appear to be a plane wave. The speed measured by this
method is thus the phase velocity introduced in Section II-A, the
magnitude of which we have denoted by , and direction by
(the subscript stands for wave). It corresponds to how fast

a plane wave would travel in a given direction. The polar plot of
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versus is known as the velocity surface, and unlike the
wave surface described above, has no simple physical interpre-
tation.
In a nondispersive isotropic medium, the phase and group ve-

locities are identical. However, in an anisotropic medium, the
phase and group velocity magnitudes in the same direction are
in general not equal. In fact, group velocities can have multiple
values in the same direction, whereas the phase velocity is al-
ways a single valued function of direction [42]. In addition, at
any location on a nonplanar wavefront, the phase and group ve-
locity directions are also generally different. The phase velocity
direction is by definition perpendicular to the wavefront,
while this is not necessarily the case for the group velocity di-
rection .
It is worth noting that phase and group velocity are general

concepts. The differences between the two types of speed mea-
surements can be due to any mechanism which causes the wave
velocity to vary over homogeneous media. This includes disper-
sion due to viscosity, where the speed varies with frequency, as
well as anisotropy, where the speed varies with direction. The
effect of viscosity on phase velocity can be quantified using
a technique such as Fourier spectroscopy [43]. This method
uses the Fourier transform to separate and measure the speed of
individual frequency components of a broadband shear wave.
The isolation of individual plane wave components emitted by
a point source as described here is an analogous concept for
anisotropic media. To account for the effects of both viscosity
and anisotropy in phase velocity measurements, both Fourier
spectroscopy and analysis of wave propagation over small spa-
tial domains where the wave front is locally planar can be ap-
plied concurrently. In this paper, the effects of viscosity will be
neglected as a first order approximation, and the terms phase and
group velocity will be used in the context of anisotropy only.
The phase velocity of shear waves in TI media was derived

Section II-A and shown in (10). The group velocity may be
found from the phase velocity using the transformation [42]

(11)

For shear waves in TI media, substitution of (10) into (11)
leads to the following expression for the group velocity:

(12)

The shear wave phase and group velocities parallel (
) and perpendicular ( ) to the fibers are

equal and are given by

(13a)

(13b)

The elastic constant is also known as the longitudinal
shear modulus, and the transverse shear modulus. The wave
and velocity surfaces for a shear wave in a typical muscle-like
TI material are shown in Fig. 3. As it can be seen, the wave
surface is an ellipse, while the velocity surface has a figure-eight
shape (mathematically known as a hippopede, or “horse-fetter”
curve).

III. METHODS

It can be seen from the previous section that measurement of
the SWS along and across muscle fibers allows one to quantify
the TI elastic constants and (the longitudinal and trans-
verse shear moduli). The following subsections will describe
how the SWS along and across the fibers, as well as the 3-D fiber
orientation, can be estimated by monitoring shear wave propa-
gation using a 2-D matrix array transducer in ex vivo muscle
samples. The methods used for independent verification of the
true 3-D fiber orientation in these samples are also presented.

A. Experimental Setup

An annular focused HIFU piston transducer (H-101, Sonic
Concepts, Bothell, WA, USA) was used to induce shear wave
propagation with acoustic radiation force. The push was a 400
cycle, 1.1-MHz pulse with a derated intensity of

focused at 63.2 mm axially from the radiating
surface of the HIFU transducer with a F/1 focal geometry. A
2.8 MHz 2-D matrix array transducer (4Z1C on an SC2000
scanner, Siemens Healthcare, Ultrasound Business Unit, Moun-
tain View, CA, USA) inserted in the 38.1-mm-diameter central
opening of the HIFU piston was used for monitoring the re-
sulting shear wave displacement in 3-D [44]. This transducer
contains 48 36 (lateral elevation) square elements 0.4 mm
in dimension. A 72 72 (lateral elevation) rectangular grid
of tracking beams was used for shear wave tracking. At an axial
depth of 60 mm in 4Z1C coordinates, which is close to the HIFU
push focus when the two transducers are coupled, these beams
give a coronal field-of-view (FOV). The push axis
was located at the center of this grid so that the SWS in all di-
rections away from the push could be measured. 64:1 parallel
receive was used to beamform a grid of 8 8 beams on every
transmit so that only 81 transmits were required to interrogate
the entire grid of 72 72 beams. No form of compounding was
used to improve the B-mode resolution or signal-to-noise ratio.
Shear wave displacement was monitored by repeating the push,
and sequentially monitoring each of the 81 parallel receive beam
groups in turn, until data from the entire FOV was acquired.
Thus, 81 ARFI excitations in total were required to acquire data
over the 3-D volume. The time interval between pushes was 22
s, and was limited by the data transfer rate on the SC2000, and
not any physical ultrasonic imaging constraints. This results in
a total acquisition time of 30 min for the entire FOV. A frame
rate of 7.7 kHz was used to image shear wave dynamics, and
the total tracking duration was 16 ms. Axial displacement along
each beamline was measured using a zero-phase displacement
estimation algorithm [45].
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Fig. 3. The phase and group velocity [m/s] of shear waves traveling in a TI
material with , , and . The wave
surface (group velocity) is an ellipse, while the velocity surface (phase velocity)
is a hippopede. The phase and group velocities parallel to the fibers and
perpendicular to the fibers are always the same.

Fig. 4. Canine gluteus medius muscle sample (outlined) embedded in agar.
This sample was approximately 80 mm wide and 130 mm long. Approximately
20 1-mm-diameter chrome steel bearing balls were inserted into the gel to act
as point targets for registration of shear wave data to a high-resolution B-mode
volume of the sample for verifying the fiber orientation. One ball is circled and
shown by the tip of the arrow.

Shear wave imaging was performed on six freshly excised ca-
nine muscle samples from the thigh (semimembranosus, semi-
tendinosus) and buttocks (gluteus medius). The samples were
embedded in an agar gel with minimal acoustic attenuation and
a speed of sound of approximately 1540 m/s [46], as shown in
Fig. 4. The agar blocks were immersed in a water-bath during
shear wave imaging to provide a standoff so that the push from
the HIFU transducer could be focused in the muscle. A single
acquisition was performed on each sample with the push axis
approximately perpendicular to the fibers, which were visible
to the naked eye. As shown in Fig. 5, this corresponds to a push
axis in the two-direction, and shear wave propagation in the 1–3
plane ( and are of course arbitrary and interchangeable). In
this configuration, shear wave propagation is induced in a plane
of symmetry, and can be directly viewed in a coronal plane of
the 2-D matrix array image coordinates. To investigate whether
it is possible to estimate the fiber orientation for the more gen-
eral case when the push is not perpendicular to the fibers, four
additional shear wave acquisitions on each sample were also
performed with the push oblique to the fibers by tilting the 4Z1C
and HIFU probe, as shown in Fig. 5. In this paper, the angle of
the push relative to the fibers ( , as shown in Fig. 5) will be ex-
pressed as an offset from (i.e., for a perpendicular

Fig. 5. Shear wave imaging setup. 4Z1C and HIFU probe were orientated so
that the push axis (shown by the arrow) is perpendicular to the fibers, as shown
on the left . In this configuration, shear wave propagation in a plane
of symmetry can be directly observed in the coronal plane of the shear wave
imaging coordinate system (shown by the dashed plane). Additional acquisi-
tions were performed with the push oblique to the fibers by tilting the 4Z1C and
HIFU probes, as shown on the right .

push). The maximum push tilt angle used was approximately
.

B. SWS Measurement for Push Perpendicular to Fibers

As shown in Section II-A, when the push axis is perpendic-
ular to the fibers (i.e., a push angle of 0 ), shear waves are
induced in the plane perpendicular to the push. In this simplified
imaging case, the coronal plane of the 2-D matrix array image
coordinates directly correspond to the orientation of the plane
of symmetry in which the shear wave propagates. Fig. 6(a)–(c)
shows the shear wave displacement amplitude in a muscle
sample at three time steps after ARFI excitation perpendicular
to the fibers. Within the coronal plane at the push focus, the
shape of the wave front appears elliptical, similar to the wave
surface predicted by (12) and shown in Fig. 3. Indeed, the ARFI
excitation from the HIFU piston is axisymmetric within this
plane and can be considered a point source. Monitoring shear
wave propagation in 3-D thus allows direct access to the shear
wave group velocity in all directions. In addition, the shear
wave phase velocity in all directions can also be estimated, as
will be shown below.
In this paper, the effects of viscosity on SWS estimation in

muscle are neglected as a first order approximation. The shear
wave arrival-times at all locations were measured by finding
the time-to-peak (TTP) of the displacement time profile [47].
Fig. 1(b) shows the shear wave arrival-time in the coronal plane
at the push focus for the data-set shown in Fig. 6(a)–(c). The
axial resolution of the arrival times was 0.6 mm and no aver-
aging of the displacements or arrival-times were performed ax-
ially over the push depth-of-field. Group velocity measurement
was performed by examining the arrival-time profiles within
this plane along rays from the push, which is the source of the
shear wave. The inverse slope of the profile gives the group ve-
locity for the corresponding ray direction . The group ve-
locity was calculated for ray angles from 0 to 360 in 1 steps.
For the wave arrival-times in Fig. 7(b), the group velocity in all
directions is shown in Fig. 7(d).
As mentioned in Section II-B, the phase velocity can be mea-

sured by considering wave propagation over a small spatial re-
gion where the wavefront is approximately planar. This was
done by estimating the local spatial derivative of the shear wave
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Fig. 6. 3-D displacement field in ex vivomuscle sample measured by the 4Z1C
after ARFI excitation using the HIFU piston. The push axis was perpendicular
to the fibers in the top row [(a), (c)], and oblique to the fibers in the bottom row
[(d), (f)]. The displacements measured along the beamline direction using 1-D
speckle tracking are shown as a volume rendering at three different time steps
after the excitation. Darker voxels correspond to larger displacement amplitude.
The push axis is parallel to the axial direction and is centered at the origin in the
lateral and elevation dimensions. Data from the coronal plane at the push focus,
outlined by the dashed lines, is projected onto the bottom of the figures. This
plane corresponds to the plane of symmetry in which shear wave propagation
occurs when the push is perpendicular to the fibers in (a)–(c). For this push
orientation, the SWS and fiber direction can be directly estimated from data in
this plane. In (d)–(f), the push is oblique to the fibers. From the perspective
shown, the fibers have been rotated in the clockwise direction relative to the
imaging coordinates. In this case, the tilt angle for the plane of symmetry must
also be estimated. (a) Perpendicular push ms. (b) Perpendicular push

ms. (c) Perpendicular push ms. (d) Oblique push ms.
(e) Oblique push ms. (f) Oblique push ms.

arrival-time. The arrival-time data was first smoothed by con-
volving with a 3-D Gaussian kernel with a standard deviation
of 1.75 mm. The scale of this filter was chosen to suppress
noise from high spatial frequencies but still provide a suffi-
ciently localized estimate of the derivative. The spatial deriva-
tives were then calculated at every location using finite differ-
ences. Fig. 7(c) shows the estimated gradient direction and mag-
nitude at selected points in the coronal plane at the push focus
for the data-set in Fig. 6(a)–(c). Note that the gradient vectors
are 3-D and have been projected onto this plane. The average
angle between the gradient vectors and the plane was 10 , and
the small out-of-plane components in the axial dimension were
neglected. At any location, the gradient direction corresponds
to the phase angle , and the inverse gradient magnitude cor-
responds to the phase velocity . The average phase velocity
over all locations in the plane as a function of phase angle from
0 to 360 in 1 bins is shown in Fig. 7(d).
The fiber orientation, as well as the SWS across and along

the fibers can be estimated by fitting either the shear wave
phase or group velocity curves defined in (10) and (12) to the
corresponding SWS measured within the plane of symmetry.
Nonlinear least-squares curve fitting was performed using the
Levenberg–Marquardt algorithm. Outlier speed measurements
were discarded using random sample consensus (RANSAC)
[48]. The phase and group velocity curves fit to the corre-
sponding speed measurements are shown in Fig. 7(d). The fiber
orientation can be estimated from the angle of the major axes of

Fig. 7. Shear wave arrival-time in the coronal plane at the push focus, as
highlighted in (a), are shown in (b) and (c) for the shear wave acquisition
in Fig. 6(a)–(c). Push was approximately perpendicular to the fibers so that
the plane shown here corresponds to a plane of symmetry of the muscle. (b)
Group velocity is calculated using the profile of arrival-times along rays from
the origin, as shown for one angle by the black line. (c) Phase velocity
can be measured from the same data by finding the local gradient of the
arrival-times at all locations using finite differences. Direction and magnitude
of the gradient within the coronal plane at selected points are shown by the
arrows on top of the arrival-times. (d) Group velocity from (b) for all ray angles
are shown in black, and the phase velocity from (c) averaged over all spatial
locations in the plane as a function of phase angle in gray. Fiber orientation is
estimated by fitting an ellipse to the measured group velocity or a hippopede to
the phase velocity. Orientation of the major axis of the fit corresponds to the
fiber direction, while the length of the major and minor axes gives the SWS
along and across the fibers, respectively. Estimated SWS along the fibers from
phase and group velocity measurements in this case was 5.5 m/s and 5.3 m/s,
respectively, and across the fibers was 2.8 m/s and 2.7 m/s, respectively.

the fitted curves, while the length of the major and minor axes
give the SWS along and across the fibers, respectively. The-
oretically, the fiber orientation and SWS along and across the
fibers estimated from phase and group velocity measurements
should be the same.

C. SWS Measurement for Push Oblique to Fibers

Fig. 6(d)–(f) shows the shear wave displacement amplitude
in a muscle sample at three time steps after ARFI excitation
oblique to the fibers. For this imaging scenario, shear wave
propagation is still induced by the component of the push per-
pendicular to the fibers. However, the plane of symmetry in
which shear wave propagation occurs is no longer the same ori-
entation as the coronal plane of the image coordinates, as in
Fig. 6(a)–(c).
To estimate the fiber orientation when the push is not per-

pendicular to the fibers, the orientation of the plane of sym-
metry in which shear wave propagation occurs must be found
in addition to the direction of the fibers within this plane. This
was done by estimating the dominant spatial orientation of the
shear wave displacement amplitude using the iterative proce-
dure shown in Fig. 8, and summarized as follows. In the first
iteration, the coronal plane is used as an initial guess for a plane
of symmetry. The SWS is measured in this plane as described



WANG et al.: IMAGING TRANSVERSE ISOTROPIC PROPERTIES OF MUSCLE BY MONITORING ACOUSTIC RADIATION FORCE INDUCED SHEAR WAVES 1677

Fig. 8. Flowchart of estimating fiber orientation when push is oblique to fibers.

in the previous subsection using either the group or phase ve-
locity. The angle of the 3-D phase velocity vectors out of the
coronal plane for oblique pushes were larger than for the per-
pendicular push cases, but was still on average below 25 over
the entire coronal plane in all data-sets. Thus, sampling the ar-
rival-times in the coronal plane still allows an approximation of
the true SWS to be calculated. Next, the direction perpendicular
to the fibers (the direction with the smallest speed) is estimated
by fitting an ellipse or hippopede to the measured speeds in the
coronal plane, as shown in Fig. 9(b). This direction is invariant
under a rotation between the push and the fibers and corresponds
to the axis of rotation (AOR) for the tilt angle. Then, the shear
wave displacement amplitude at spatial locations in the plane
perpendicular to this axis is found, as shown in Fig. 9(c). The
displacement amplitude was measured using the maximum dis-
placement 2–9.6 ms after ARFI excitation to avoid the initial
high amplitude displacements within the region of excitation
(ROE) not associated with shear wave propagation. The 2-D
radon transform (2-D RT) of this data is then computed. The
peak of the 2-D RT is used to find the line which maximizes the
sum of the displacement amplitude along its length, as shown
in Fig. 9(c). The orientation of this line gives an updated esti-
mate of the fiber direction, and the plane passing through the
line and the AOR gives an new estimate for the plane of sym-
metry. This plane is then used as the input in another iteration

Fig. 9. Finding the plane of symmetry for an acquisition where the push was
oblique to the fibers. The coronal plane at the push focus, illustrated by the plane
with the solid outline in (a), is used as an initial guess for a plane of symmetry.
(b) Phase velocity measured in the coronal plane. Direction perpendicular to the
fibers can be estimated by fitting a hippopede to the phase velocity in this plane
and finding its minor axis, which is shown by the arrow in (a) and (b). This
direction corresponds to the axis of rotation (AOR) for the tilt between the push
and the fibers. Alternatively, the AOR can be estimated from group velocity
measurements and fitting an ellipse. (c) Shear wave displacement amplitude in
the plane orthogonal to the AOR. The orientation of this plane is shown in (a) by
the dashed lines. AOR [arrow in (a) and (b)] points out of the page in (c) and is
shown by the circled dot. White dashed line shows the fiber direction estimated
by finding the dominant orientation of the displacement amplitude in this plane
using the 2-D radon transform (2-D RT). The plane passing through this line
and the AOR gives an updated estimate for the plane of symmetry. SWS and the
AOR is recalculated using data in this plane and another iteration is performed
if the AOR differs by more than 1 . Algorithm converged in two iterations for
this example and the estimated tilt angle was 19.9 , whereas the true angle
measured from the separate high-resolution B-mode validation experiment was
19.5 .

of the algorithm to further refine the fiber orientation estimate.
Each iteration generates a new estimate for the plane of sym-
metry using the AOR from the previous iteration, and the AOR
is updated using the SWS in the new plane. The algorithm ter-
minates when the change in angle between the AOR estimated
in successive iterations is less than 1 . The SWS and principle
axes computed from the plane of symmetry in the final iteration
is returned.

D. Fiber Orientation From B-mode

To independently verify the muscle fiber orientation esti-
mated from shear wave imaging, B-mode ultrasound volumes
of the samples were used to measure fiber orientation. Indi-
vidual fasciculi can be identified on B-mode as hypoechoic
cylindrical structures, surrounded by thin, linear hyperechoic
connective tissue called the perimysium [27]. Unfortunately,
due to the low frequency of the 4Z1C matrix array (2.8 MHz),
these structures were not clearly apparent in the B-mode
volumes acquired during shear wave imaging. Therefore,
the muscle samples were scanned using a 14MHz 1-D array
(14L5 on the S2000 scanner, Siemens Healthcare, Ultrasound
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Fig. 10. (a) High-resolution 14L5 B-mode volume of a muscle sample used to
measure fiber orientation. (b) B-mode volume in (a) after line enhancement fil-
tering. (c) Variance of the 3-D RT of the line enhanced B-mode in (b) for various
3-D orientations. The maximum variance (marked by cross) corresponds to the
dominant fiber orientation.

Business Unit, Mountain View, CA, USA). The 14L5 was
mechanically swept over the samples using a translation stage
(Model MM3000, Newport Corporation, Irvine, CA, USA) in
0.1 mm steps to obtain high-resolution 3-D B-mode volumes
of the samples, an example of which is shown in Fig. 10(a).
To register the 14L5 volumes to the 4Z1C shear wave

imaging coordinates, the location of 1-mm-diameter chrome
steel bearing balls embedded in the agar surrounding the muscle
were identified in the 14L5 and 4Z1C B-mode images. These
balls can be seen in Fig. 4, and appear in B-mode as point
targets, as shown in Fig. 11. Their locations were determined
by manually identifying the region of interest surrounding the
target, thresholding, and calculating the image centroid. The
14L5 and 4Z1C volumes were rigidly registered by minimizing
the square of the distance between the corresponding point
target locations [49], as shown in Fig. 11(c). Approximately
20 balls were used as targets for registration for each sample,
and the root mean square (rms) target registration error was
typically under 2 mm.
Automatic measurement of muscle fiber orientation in 2-D

B-mode images has previously been performed using the radon
transform [50], [51]. In this study, the approach used by Rana et
al. [50] was extended to 3-D. To enhance the linear structure of
the perimysium surrounding the fasciculi and suppress speckle
noise, the 3-D multiscale vessel enhancement filter described
by Frangi et al. [52] was applied to the 14L5 B-mode. First,
the image was convolved with 3-D Gaussian kernels with stan-
dard deviations of 0.1, 0.3, and 0.5 mm to provide smoothing at
different scales. The eigenvalues of the 3-D Hessian matrix of
the smoothed images, which provides information on the shape
of curvature changes in the image, were then analyzed using
the vesselness function defined in [52]. The thresholds ,

, and were used in the vesselness function to
maximize the filter response for the hyperechoic perimysium.
This was repeated at every voxel for the three different scales,
and the maximum response across the different scales was used
as the filter output. The B-mode volume in Fig. 10(a) after fil-
tering is shown in Fig. 10(b).
To determine the predominant orientation of the fibers, the

3-D Radon Transform (3-D RT) of the 14L5 B-mode after
line enhancement filtering was computed for all possible 3-D
orientations. For each orientation, the 3-D RT is computed by
projecting a 2-D grid of parallel rays from that angle onto the
volume. The integral of the volume voxels along each ray is
recorded. The output of the 3-D RT for that orientation is the

2-D image formed by all the rays in the grid. The 3-D RT was
calculated for spherical angles of (inclination),
and (azimuth), which constitutes a hemisphere.
Note that angles on only one half of a sphere need to be con-
sidered since view-points on opposite sides (antipodes) give
the same 3-D RT. When the 3-D RT orientation matches the
predominant fiber angle, the output image will have high values
where the rays are coincident to the hyperechoic perimysium,
and low values where they pass through the hypoechoic fas-
ciculi. In contrast, when the 3-D RT orientation is not aligned
with the fibers, all the rays will tend to pass through equal
numbers of bright and dark voxels, giving a more uniform
output image. Thus, the dominant fiber orientation can be
determined by searching for the angle where the 3-D RT has
the greatest variance. The peak 3-D RT variance for the volume
in Fig. 10(b) is shown in Fig. 10(c).

IV. RESULTS

A. Fiber Angle for Push Perpendicular to Fibers

The registered 14L5 B-mode and 4Z1C shear wave data for
one acquisition when the push was perpendicular to the fibers
is shown in Fig. 12(b). The phase and group velocities mea-
sured in the coronal plane are shown in Fig. 12(c), along with
the true fiber orientation measured by 3-D RT, which is pro-
jected onto the plane. The errors in the fiber orientation esti-
mated using phase and group velocity measurements were 1.6
and 1.9 , respectively. Note that some of this error includes the
angle between the true fiber orientation measured using 3-D RT,
and the image coronal plane, which was assumed to be a plane of
symmetry in alignment with the fibers in the SWS experiment.
This angle would be zero if the push was oriented perfectly per-
pendicular to the fibers in the SWS experimental setup. In this
case, a slight tilt of 1.5 existed. The average error in the fiber
orientation estimated using phase and group velocity when the
push was oriented approximately perpendicular to the fibers for
the six samples (total of six acquisitions) was and

(mean standard deviation), respectively. The av-
erage tilt angle for the push due to misalignment in the setup
procedure was over the six acquisitions.

B. Fiber Angle for Push Oblique to Fibers

The registered 14L5 B-mode and 4Z1C shear wave data for
one acquisition when the push was oblique to the fibers is shown
in Fig. 13(b). The tilt angle for the plane of symmetry estimated
using the displacement amplitude as described in Section III-C
was 19.9 . In comparison, the true tilt angle measured by 3-D
RT was 19.5 . The error in the 3-D fiber orientation from phase
and group velocity measurements in the estimated plane of sym-
metry was 0.5 and 2.1 , respectively, for this case. Note that
this overall error includes both inaccuracies in estimating the
tilt angle (orientation of the plane of symmetry) using the dis-
placement amplitude, as well as the fiber orientation within the
plane of symmetry using the SWS.
The plane of symmetry orientation estimated for 30 acquisi-

tions taken with a variety of push angles on the six samples is
shown in Fig. 14(a) versus the true angle measured by 3-D RT.
The average error in the estimated push angle was .
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Fig. 11. (a) Bearing ball in 4Z1C B-mode, with its centroid location marked by a cross. (b) Bearing ball in 14L5 B-mode, with its centroid location marked by
a cross. (c) Registered 4Z1C and 14L5 B-mode volumes. Nineteen bearing balls were used as fiducial markers for registration in this example, and the rms target
registration error was 1.9 mm.

Fig. 12. High-resolution 14L5 B-mode registered to 4Z1C shear wave data for
an acquisition where the push was perpendicular to the fibers. (a) Data from
the coronal plane at the push focus is shown. (b) Shear wave displacement am-
plitude at one time step is overlaid on top of the 14L5 B-mode in this plane.
(c) Group and phase velocity of the shear wave in (b) in the coronal plane
and the fitted ellipse and hippopede. The fiber orientation is estimated from the
major axes of the fitted curves. True fiber orientation determined from the 14L5
B-mode using the 3-D RT is shown by the arrows. Error in the fiber orientation
estimated from phase and group velocities in this case was 1.6 and 1.9 , re-
spectively.

Fig. 14(b) shows the displacement amplitude at the push focus
as a function of push angle. The median peak displacement
within 5 mm of the push axis and inside the focal depth-of-field
(54–66 mm axially) was used to measure the push displace-
ment amplitude. The overall 3-D error in the fiber orientation
determined from phase and group velocity measurements in es-
timated plane of symmetry for the 30 acquisitions was
and , respectively.

C. Shear Wave Speed

The mean and standard deviation of the estimated SWS along
and across the fibers obtained from five different push angles

Fig. 13. High-resolution 14L5 B-mode registered to 4Z1C shear wave data
for an acquisition where the push was oblique to the fibers. (a) Data from the
plane orthogonal to the axis of rotation (AOR) estimated using the procedure
in Fig. 8 is shown. (b) Shear wave displacement amplitude at one time step is
overlaid on top of the 14L5 B-mode in this plane. Plane of symmetry angle
estimated from the displacement amplitude is shown by the dashed line. True
angle determined from the high-resolution 14L5 B-mode using the 3-D RT is
shown by the arrows. Difference between the two was 0.4 in this case. Fiber
orientation was determined from the phase and group velocity measurements
in the estimated plane of symmetry. Error in the 3-D fiber orientation was 0.5
from phase velocity and 2.1 from group velocity measurements for this

example.

Fig. 14. (a) Estimated push angle (y-axis) for 30 acquisitions on the six muscle
samples versus the true angle (x-axis). Dashed line indicates a slope of unity.
Plane of symmetry orientation was estimated using the procedure shown in
Fig. 8, and the true angle was measured from the high-resolution 14L5 B-mode
using the 3-D RT. Mean error was . (b) Median peak displacement
in time within 5 mm of the push axis inside the push depth-of-field (54–66 mm)
as a function of push angle. Coefficient of determination between the two
variables is 0.43.

(approximately 0 , 10 , 20 , 30 , and 40 ) on each of the six
samples are shown in Fig. 15. An outlier case for the phase ve-
locity measurement along the fibers occurred for a push angle
of 35 on sample 1. This acquisition had a push displacement
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Fig. 15. Phase velocity and group velocity along and across
the fibers averaged over the five push angles used for each sample (in-

cluding the case when the push was perpendicular to the fibers). The diamond in-
dicates an outlier phase velocity measured for a push angle of 35 on sample 1.

amplitude of , which was the lowest of the 30 acquisi-
tions [see Fig. 14(b)]. While the estimated phase velocity along
the fibers was incorrectly high for this case, the estimated phase
velocity across the fibers, and group velocities for both propa-
gation directions, were still consistent with those obtained using
other push angles on this sample. In addition, the fiber direction
was also correctly estimated (the error was 5.1 ) from the phase
velocity measurements in this case.

V. DISCUSSION

Shear wave propagation induced by focused ARFI excita-
tion can be monitored in 3-D using a 2-D matrix array trans-
ducer by electronically steering the tracking beam in both the
lateral and elevation directions. In contrast, with conventional
1-D arrays, shear wave propagation can only be monitored in
one plane unless the probe is physically repositioned, which
limits the number of directions the SWS can be practically mea-
sured to assess anisotropy. Since a maximum of 64 parallel
receive channels on the SC2000 scanner was available, 81 re-
peated ARFI excitations were required to monitor shear wave
propagation at all the beam locations in the FOV used in this
study. The number of repeat ARFI excitations could be reduced
with more parallel receive channels or single channel data ac-
quisition and software beamforming. Alternatively, the number
of tracking locations could be reduced at the expense of spa-
tial resolution, or different tracking locations could be interro-
gated in turn temporally at the expense of temporal resolution.
The minimum time interval between repeated ARFI excitations
using the HIFU piston is only physically limited by the shear
wave tracking duration, which was 16 ms in this study. If the
81 pushes used to acquire data could be repeated at this rate, the
total acquisition time would only be 1.3 s. Unfortunately, due
to current software limitations for saving data on the SC2000,
a lengthy delay of 22 s was necessary between excitations. If
data transfer on the SC2000 could be made more efficient, then
the long acquisition time of 30 min currently required could be
reduced significantly.
One of the challenging aspects of performing shear wave

imaging in skeletal muscle using conventional 1-D array ultra-
sound transducers is that the orientation of the transducer rela-
tive to the fibers is usually not known precisely. Visualization
of muscle fibers in B-mode requires the use of a high frequency
transducer, which is not always available. In addition, determi-

nation of the fiber orientation, which is 3-D in nature, from 2-D
cross-sectional images is not a trivial task. Indeed, measurement
of the true fiber orientation required scanning the muscle sam-
ples using a high frequency ultrasound transducer mounted on
a translation stage in a separate experiment in this study. Due to
the anisotropic SWS in muscle, misregistration of the imaging
plane and the fibers can introduce error in the measurement of
SWS along and across the fibers for quantification of the longi-
tudinal and transverse shear moduli. A major advantage of mon-
itoring shear wave propagation in 3-D using a 2-D matrix array
is that both the phase and group velocity in all directions can
be measured in a plane of symmetry of the muscle, as shown
in Fig. 7. This study has demonstrated that by fitting the the-
oretical relationship for SWS in a TI material [shown in (10)
and (12)] to the measured speeds in different directions, the true
fiber orientation can be estimated. This eliminates the need for
knowledge of the fiber direction during imaging and enables the
SWS along and across the fibers to be measured independent of
the probe orientation.
The most straightforward imaging scenario for measuring

SWS anisotropy in skeletal muscle using a 2-D matrix array is
to orient the push axis perpendicular to the fibers. As shown in
Fig. 6(a)–(c), this induces a shear wave in the image coronal
plane, which is also a plane of symmetry of the muscle. The
shear wave phase and group velocity in all directions relative
to the fiber can therefore be measured using the shear wave
data within this plane. In this study, the push axis was able
to be oriented approximately perpendicular to the fibers by
visual inspection, as the fibers of the ex vivo muscle samples
ran parallel to their surface and were visible to the naked eye.
For the six samples imaged, a fairly accurate alignment of the
push axis was achieved using this procedure, with an average
tilt angle of .
In in vivo shear wave imaging scenarios, perpendicular align-

ment of the push axis to the fibers may be more difficult. First,
the muscle plane of symmetry would not be visible to the naked
eye as for the ex vivo samples. In addition, as mentioned pre-
viously, fiber orientation may not be visible in B-mode either
if low frequency transducers are used for shear wave imaging.
Finally, the acoustic window available for imaging in vivo may
limit the physical orientation of the transducer. Therefore, in
this study, data was also acquired on all the samples for the
more general imaging case when the push is oblique to the
fibers. It can be seen on Fig. 6(d)–(f) that in this configuration,
shear wave propagation is still induced, but its plane of propa-
gation occurs at an angle to the image coronal plane. The domi-
nant direction of shear wave propagation can be found using the
procedure shown in Fig. 8. This angle is shown to correspond to
the plane of symmetry orientation (tilt between the push and the
fibers) in Fig. 13(b) and Fig. 14(a). By calculating the phase and
group velocity in the plane of symmetry determined using this
procedure, the SWS along and across the fibers, and the fiber
orientation can be estimated when the push is oblique to the
fibers. The mean error in estimating the plane of symmetry for
30 acquisitions with various push angles up to approximately
40 was . This is only slightly larger than the error
in alignment when attempting to position the push axis perpen-
dicular to the fibers during imaging, which was . The
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overall 3-D fiber orientation error after estimating the angle of
the plane of symmetry for the 30 acquisitions was for
phase velocity measurements, and for group velocity
measurements. This was slightly larger than the 3-D fiber orien-
tation errors of and from phase and group
velocity measurements for the six acquisitions when the push
was perpendicular to the fibers and the image coronal plane
could be assumed to be a plane of symmetry. As mentioned
above, the error when attempting to align the push axis perpen-
dicular to muscle fibers is likely to be greater in vivo , so the
additional error associated with estimating the plane of sym-
metry orientation is not likely to be significant in practice.
Consistent values of SWS along and across the fibers were

measured with different push angles, as shown by the error bar
sizes in Fig. 15. This suggests that SWS measurements can be
made independent of the push angle. However, as Fig. 14(b)
shows, the displacement amplitude at the push focus decreases
as the push axis is tilted towards the fiber direction. This causes
the shear wave amplitude to decrease for larger tilt angles, and
makes accurate SWS measurements more challenging in these
cases. Indeed, one outlier phase velocity measurement along
the fibers occurred for a highly oblique push angle of 35 on
Sample 1, shown by the diamond in Fig. 15. This acquisition
had the lowest displacement amplitude at the push focus of all
the data-sets. Although the phase velocity along the fibers were
incorrectly measured, the velocity across the fibers and the fiber
direction were still estimated correctly from the phase velocity
measurements for this case.
The decrease in ARFI displacement amplitude as the push is

tilted towards the fiber direction can be explained by two di-
rectionally dependent factors. One is anisotropic acoustic scat-
tering properties in muscle. It has previously been shown that
the acoustic attenuation coefficient of skeletal muscle is a factor
of 2 greater at 45 to the fibers than perpendicular to the fibers
[53]. A higher acoustic attenuation leads to greater loss of en-
ergy in the near-field of the pushing beam, smaller radiation
force amplitudes within the depth-of-field, and thus smaller dis-
placement amplitudes at the focus [54]. The other factor is the
anisotropic mechanical properties of muscle. Since the shear
modulus is greater along the fibers than across, the effective
stiffness in the push direction increases as the push angle varies
from perpendicular to parallel to the fibers. Both of these fac-
tors contribute to the decrease in displacement amplitude near
the excitation focus as the tilt angle of the push increases.
The ratio between the SWS along and across the fibers in all

the samples was approximately 2:1, which is in agreement with
the degree of anisotropy observed in skeletal muscle in other
studies [10], [20], [21]. The range of SWS observed in this study
is also consistent with that reported elsewhere [10], [21], [28].
Nevertheless, caution must be used in comparing absolute speed
measurements in different studies due to the wide range of con-
ditions under which imaging has been performed on muscle,
whose stiffness is dynamic and can vary over two orders of mag-
nitude [20]. In this study, ex vivo muscle samples embedded in
agar were imaged. Although the SWS measured herein may not
be representative of realistic values in vivo, fixing the muscles
rigidly in agar enabled the true 3-D fiber orientation of the sam-
ples to be verified in this study.

The fiber orientation and SWS along and across the fibers
obtained with phase and group velocity measurements were
comparable. Additional smoothing of the arrival-times was
performed spatially in order to calculate the phase velocity, and
this is probably the cause of the smoother appearance of the
phase velocity profile compared to the group velocity shown in
Fig. 7(d). However, as shown in the same figure, differences in
the estimated SWS along and across the fibers from both sets of
velocity measurements are small once the theoretical velocity
curves are fit to the experimental data to provide additional
smoothing.
The group velocity is perhaps the most intuitive measure of

speed, and its relationship with direction has a clear physical in-
terpretation as the wave surface. Group velocity measurement
(along a ray from the source to an observer) is the approach
usually taken to estimate the SWS in ultrasound based radia-
tion force shear wave imaging methods. This is largely due to
the fact that using conventional 1-D arrays for monitoring shear
wave propagation only allows measurement of the SWS along
a single ray from the radiation force excitation. By using a 2-D
matrix array to track shear wave propagation in 3-D in this study,
the local phase velocity at every spatial location was able to be
measured. Phase velocity measurement has several advantages
over group velocity in the context of anisotropy. Mathemati-
cally, phase velocity is a more tractable concept than group ve-
locity. Expressions for phase velocity can be easily derived from
Christoffel’s equation, as shown in Section II-A. The group ve-
locity, on the other hand, must be found parametrically from the
phase velocity using the transformation in (11). In the case of
shear waves in TI media, an analytical expression exists for the
group velocity (12), but an analytical expression may not exist
for other wave-modes. In addition, the phase velocity is always
a single valued function of direction, whereas the group velocity
can take onmultiple values.Measurement of group velocity also
relies on having a point source at a known location. In this study,
the location of the push focus from the HIFU piston was known
to be at the center of the FOV of the imaging array [44]. In addi-
tion, the focal geometry of the HIFU piston is axisymmetric and
is a good approximation for a point source. When the location
of the source is not known precisely, or the focus of the ARFI
excitation is not axisymmetric, bias in group velocity measure-
ments can occur [55]. In these situations, phase velocity mea-
surements, which do not require the location or timing of the
source to be known a priori, may provide a more accurate mea-
surement of the SWS.
The effects of dispersion due to viscosity were neglected in

this study as a first-order approximation. However, it has been
reported that shear waves propagating in muscle is subject to
appreciable dispersion due to viscosity [10], [20], [37], [43]. In
particular, Deffieux et al. and Gennisson et al. showed that the
viscoelastic properties of muscle were anisotropic, with greater
dispersion across the fibers than along the fibers [20], [43]. Dis-
persion due to viscosity could also be analyzed using the data
from the 2-D matrix array in this study, since a broadband ex-
citation was used to induce shear waves. To analyze the ef-
fects of viscosity, the Fourier shear wave spectroscopy tech-
nique described by Deffieux et al. [43] could be applied. This
method uses phase information of the Fourier transform to find
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the arrival-times of individual shear wave frequency compo-
nents. It would be relatively straightforward to substitute the ar-
rival-times measured using the TTP in this study with the phase
information from Fourier analysis to account for the effects of
both anisotropy and viscosity on the SWS. This would allow the
SWS to be characterized both as a function of frequency and di-
rection. Such analysis was outside the scope of this paper, but
will be investigated in future studies. Shear wave imaging using
a 2-D matrix array could thus potentially be a valuable tool to
assess viscoelastic anisotropy in tissue.
In this study, only shear wave propagation was observed in

muscle when the push was oblique to the fibers. However, it
should be theoretically possible to also generate the quasi-shear
wave-mode, which was described in Section II-A. In particular,
the wave propagating in the coronal plane should be a superpo-
sition of shear and quasi-shear wave modes for an oblique push.
However, no evidence of any change in the wavefront shape
in this plane was observed when the push axis was tilted. As
shown in Fig. 6(d)–(f), the wavefront still appears elliptical for
an oblique push, and the velocity measurements in this plane
still fits the theoretical relationship for a shear wave, as shown in
Fig. 9(b). It is possible that the wave amplitude is dominated by
the shear wave mode, or that the difference between shear and
quasi-shear wave speeds is too subtle to allow clear separation
of the two wave modes within extent of the imaging FOV. If the
quasi-shear wave speed could be quantified, it would allow the
ratio between the Young’s moduli along and across the fibers
for a TI material in the limit of incompressibility to be deter-
mined [21]. This parameter, along with the shear moduli along
and across the fibers, would allow an incompressible TI mate-
rial to be completely characterized.
Another interesting finding of this study is that when the push

is oblique to the fibers, the dominant direction of wave propaga-
tion occurs along the fibers, as shown in Fig. 13(b). This effect
was used to find the push angle in Section III-C. The wave am-
plitude at an angle to the fibers is significantly smaller, which
cannot be explained by transverse isotropy alone. Some other
effect, such as the fibers acting as wave guides or directional
dependent shear wave attenuation due to viscoelastic anisotropy
are possible explanations, and should be investigated in future
work.
The muscle samples imaged in this study were approximately

homogeneous and their fiber directions were uniform within
the imaging FOV. Hence, TI, which is the simplest model of
anisotropy, could be used to model their behavior. Shear wave
data within a single plane of symmetry is sufficient for charac-
terizing the anisotropic SWS in this case. Future studies with the
2-D matrix array could be performed in media with more com-
plicated structure, such as the myocardium, which is known to
have layers of fibers in different orientations [18]. In this case,
SWS anisotropy would vary as a function of depth and require
data in multiple planes to be analyzed.
One disadvantage of using the HIFU transducer for ARFI ex-

citation in this study is that it has a fixed focus at only one loca-
tion, resulting in a limited depth-of-field of 12 mm over which
the shear wave can be approximated as planar. Due to the high
cost of the transducer and potential for damage to the electronics
within the probe handle at ARFI intensities, ARFI excitation

using the 4Z1C 2-Dmatrix has not yet been attempted in our lab.
However, this could be an option in the future with continued
improvements in transducer technology. Having the capability
to spatially modulate the acoustic radiation force excitation in
3-D using a 2-D matrix array would open new possibilities in
shear wave imaging. For example, a supersonic excitation [9]
could be implemented to extend the excitation depth-of-field,
which could potentially be advantageous in mapping 3-D fiber
orientations that varies with depth.
The separate HIFU transducer used for ARFI excitation in

this study is suitable for long duration high intensity ultrasound
excitations, unlike conventional diagnostic transducers. There-
fore, this system could be used to investigate 3-D shear wave
imaging using harmonic shear wave excitations similar to the
SDUV method described by Chen et al. [10]. This would allow
the frequency of the shear wave used for imaging to be precisely
controlled. In addition, the combined 4Z1C/HIFU system could
potentially be used to study monitoring of therapeutic proce-
dures performed by the HIFU transducer.

VI. CONCLUSION

Using a 2-Dmatrix array transducer to monitor ARFI induced
shear wave propagation in 3-D, the 3-Dmuscle fiber orientation,
as well as the SWS along and across the fibers can be estimated
from a single shear wave acquisition. Moreover, these measure-
ments can be performed independent of transducer orientation
with respect to the fibers. Both the phase and group velocity can
be measured from 3-D shear wave data, and either velocity can
be used to estimate the fiber direction and SWS along and across
the fibers with comparable results.When theARFI push axis can
be oriented perpendicular to the fibers, shear wave data within
the image coronal plane can be used to measure SWS and fiber
orientation. The average 3-D fiber orientation error measured by
phase and group velocities in six muscle samples when the push
was approximately perpendicular to the fibers were
and , respectively. For the more general imaging case
when the push is oblique to the fibers, the angle between the
push and the fibers can be estimated by finding the direction
along which shear wave amplitude is the largest. For 30 acqui-
sitions in the six muscle samples with oblique push angles of
up to 40 , mean errors in the measured 3-D fiber orientation
were and from phase and group velocity
measurements respectively, after estimating the push angle. Al-
though the 3-D fiber orientation can be estimated when the push
is not perpendicular to the fibers, the ARFI induced shear wave
displacement amplitude decreases as the push is tilted towards
the fibers. For this reason, outlier estimates of the SWS can
occur for highly oblique push angles.

ACKNOWLEDGMENT

The authors would like to thank Siemens Healthcare, Ul-
trasound Business Unit, Mountain View, CA, USA, for their
system support.

REFERENCES
[1] H. Kanai, “Propagation of spontaneously actuated pulsive vibration in

human heart wall and in vivo viscoelasticity estimation,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 52, no. 11, pp. 1931–1942,
Nov. 2005.



WANG et al.: IMAGING TRANSVERSE ISOTROPIC PROPERTIES OF MUSCLE BY MONITORING ACOUSTIC RADIATION FORCE INDUCED SHEAR WAVES 1683

[2] M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval,
A. Criton, M. Fink, and M. Tanter, “Quantitative assessment of arterial
wall biomechanical properties using shear wave imaging,” Ultrasound
Med. Biol., vol. 36, no. 10, pp. 1662–1676, 2010.

[3] T. Gallot, S. Catheline, P. Roux, J. Brum, N. Benech, and C. Negreira,
“Passive elastography: Shear-wave tomography from physiological-
noise correlation in soft tissues,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 58, no. 6, pp. 1122–1126, Jun. 2011.

[4] K. Sabra, S. Conti, P. Roux, and W. Kuperman, “Passive in vivo elas-
tography from skeletal muscle noise,” Appl. Phys. Lett., vol. 90, no. 19,
pp. 194 101–194 101, 2007.

[5] M. Yin, J. A. Talwalkar, K. J. Glaser, A. Manduca, R. C. Grimm, P.
J. Rossman, J. L. Fidler, and R. L. Ehman, “Assessment of hepatic
fibrosis with magnetic resonance elastography,” Clin. Gastroenterol.
Hepatol., vol. 5, no. 10, pp. 1207–1213, 2007.

[6] L. Huwart, F. Peeters, R. Sinkus, L. Annet, N. Salameh, L. C. t. Beek,
Y. Horsmans, and B. E. V. Beers, “Liver fibrosis: Non-invasive as-
sessment with MR elastography,” NMR Biomed., vol. 19, pp. 173–179,
2006.

[7] L. Sandrin, B. Fourquet, J.-M. Hasquenoph, S. Yon, C. Fournier, F.
Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and
R. Palau, “Transient elastography: A new noninvasive method for as-
sessment of hepatic fibrosis,” Ultrasound Med. Biol., vol. 29, no. 12,
pp. 1705–1713, 2003.

[8] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and
S. Y. Emelianov, “Shear wave elasticity imaging: A new ultrasonic
technology of medical diagnostics,” Ultrasound Med. Biol., vol. 24,
no. 9, pp. 1419–1435, 1998.

[9] J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: A new
technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 51, no. 4, pp. 396–409, Apr. 2004.

[10] S. Chen, M. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J.
Greenleaf, “Shearwave dispersion ultrasound vibrometry (SDUV) for
measuring tissue elasticity and viscosity,” IEEE Trans. Ultrason., Fer-
roelectr., Freq. Control, vol. 56, no. 1, pp. 55–62, Jan. 2009.

[11] K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation
using acoustic radiation force: In vivo and ex vivo results,” Ultrasound
Med. Biol., vol. 29, no. 12, pp. 1715–1723, 2003.

[12] R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and
R. Ehman, “Magnetic resonance elastography by direct visualization
of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp.
1854–1857, 1995.

[13] M. Palmeri, M. Wang, N. Rouze, M. Abdelmalek, C. Guy, B. Moser,
A. Diehl, and K. Nightingale, “Noninvasive evaluation of hepatic fi-
brosis using acoustic radiation force-based shear stiffness in patients
with nonalcoholic fatty liver disease,” J. Hepatol., vol. 55, no. 3, pp.
666–672, 2011.

[14] É. Bavu et al., “Noninvasive in vivo liver fibrosis evaluation using su-
personic shear imaging: A clinical study on 113 hepatitis c virus pa-
tients,” Ultrasound Med. Biol., vol. 37, no. 9, pp. 1361–1373, 2011.

[15] L. Huwart, C. Sempoux, E. Vicaut, N. Salameh, L. Annet, E. Danse, F.
Peeters, L. C. t. Beek, S. R. Rahier, J.Y Horsmans, and B. E. V. Beers,
“Magnetic resonance elastography for the noninvasive staging of liver
fibrosis,” Gastroenterology, vol. 135, no. 1, pp. 32–40, 2008.

[16] R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink,
“Viscoelastic shear properties of in vivo breast lesions measured by
MR elastography,” Magn. Reson. Imag., vol. 23, no. 2, pp. 159–165,
2005.

[17] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J. L. Gennisson, G.
Montaldo, M. Muller, A. Tardivon, and M. Fink, “Quantitative assess-
ment of breast lesion viscoelasticity: Initial clinical results using su-
personic shear imaging,” Ultrasound Med. Biol., vol. 34, no. 9, pp.
1373–1386, 2008.

[18] W. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.
Hagege, M. Fink, and M. Tanter, “Mapping myocardial fiber orienta-
tion using echocardiography-based shear wave imaging,” IEEE Trans.
Med. Imag., vol. 31, no. 3, pp. 554–562, Mar. 2012.

[19] R. Bouchard, S. Hsu, P. Wolf, and G. Trahey, “In vivo cardiac,
acoustic-radiation-force-driven, shear wave velocimetry,” Ultrason.
Imag., vol. 31, no. 4, pp. 201–213, 2009.

[20] J. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink, and M.
Tanter, “Viscoelastic and anisotropic mechanical properties of in vivo
muscle tissue assessed by supersonic shear imaging,”Ultrasound Med.
Biol., vol. 36, no. 5, pp. 789–801, 2010.

[21] S. Papazoglou, J. Rump, J. Braun, and I. Sack, “Shear wave group ve-
locity inversion in MR elastography of human skeletal muscle,”Magn.
Reson. Med., vol. 56, no. 3, pp. 489–497, 2006.

[22] C. Amador, M. Urban, S. Chen, and J. Greenleaf, “Shearwave disper-
sion ultrasound vibrometry (SDUV) on swine kidney,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 58, no. 12, pp. 2608–2619,
Dec. 2011.

[23] M. Tanter, D. Touboul, J. Gennisson, J. Bercoff, and M. Fink,
“High-resolution quantitative imaging of cornea elasticity using
supersonic shear imaging,” IEEE Trans. Med. Imag., vol. 28, no. 12,
pp. 1881–1893, Dec. 2009.

[24] S. Kruse, G. Rose, K. Glaser, A. Manduca, J. Felmlee, C. Jack, jr,
and R. Ehman, “Magnetic resonance elastography of the brain,” Neu-
roimage, vol. 39, no. 1, p. 231, 2008.

[25] M. Green, L. Bilston, and R. Sinkus, “In vivo brain viscoelastic prop-
erties measured by magnetic resonance elastography,” NMR Biomed.,
vol. 21, no. 7, pp. 755–764, 2008.

[26] U. Hamhaber, I. Sack, S. Papazoglou, J. Rump, D. Klatt, and J. Braun,
“Three-dimensional analysis of shear wave propagation observed by
in vivo magnetic resonance elastography of the brain,” Acta Biomate-
rialia, vol. 3, no. 1, pp. 127–137, 2007.

[27] J. O’Neill, Musculoskeletal Ultrasound: Anatomy and Technique.
New York: Springer, 2008.

[28] M. Dresner, G. Rose, P. Rossman, R. Muthupillai, A. Manduca, and
R. Ehman, “Magnetic resonance elastography of skeletal muscle,” J.
Magn. Reson. Imag., vol. 13, no. 2, pp. 269–276, 2001.

[29] S. Bensamoun, S. Ringleb, L. Littrell, Q. Chen,M. Brennan, R. Ehman,
and K. An, “Determination of thigh muscle stiffness using magnetic
resonance elastography,” J. Magn. Reson. Imag., vol. 23, no. 2, pp.
242–247, 2005.

[30] I. Sack, J. Bernarding, and J. Braun, “Analysis of wave patterns in MR
elastography of skeletal muscle using coupled harmonic oscillator sim-
ulations,” Magn. Reson. Imag., vol. 20, no. 1, pp. 95–104, 2002.

[31] R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Son-
dermann, and M. Fink, “Imaging anisotropic and viscous properties
of breast tissue by magnetic resonance-elastography,” Magn. Reson.
Med., vol. 53, no. 2, pp. 372–387, 2005.

[32] S. Ringleb, S. Bensamoun, Q. Chen, A. Manduca, K. An, and R.
Ehman, “Applications of magnetic resonance elastography to healthy
and pathologic skeletal muscle,” J. Magn. Reson. Imag., vol. 25, no.
2, pp. 301–309, 2007.

[33] D. Klatt, S. Papazoglou, J. Braun, and I. Sack, “Viscoelasticity-based
MR elastography of skeletal muscle,” Phys. Med. Biol., vol. 55, no. 21,
p. 6445, 2010.

[34] J. Gennisson, S. Catheline, S. Chaffaï, andM. Fink, “Transient elastog-
raphy in anisotropic medium: Application to the measurement of slow
and fast shear wave speeds in muscles,” J. Acoust. Soc. Am., vol. 114,
p. 536, 2003.

[35] J. Gennisson, C. Cornu, S. Catheline, M. Fink, and P. Portero, “Human
muscle hardness assessment during incremental isometric contraction
using transient elastography,” J. Biomechan., vol. 38, no. 7, pp.
1543–1550, 2005.

[36] K. Hoyt, T. Kneezel, B. Castaneda, and K. Parker, “Quantitative so-
noelastography for the in vivo assessment of skeletal muscle viscoelas-
ticity,” Phys. Med. Biol., vol. 53, no. 15, pp. 4063–4063, 2008.

[37] M. Urban, S. Chen, and J. Greenleaf, “Error in estimates of tissue ma-
terial properties from shear wave dispersion ultrasound vibrometry,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 56, no. 4, pp.
748–758, Apr. 2009.

[38] S. J. Hsu, M. L. Palermi, K. R. Nightingale, S. A. McAleavey, J. D.
Dahl, and G. E. Trahey, “Shear wave anisotropy imaging,” in Proc.
IEEE Ultrason. Symp., 2003, vol. 2, pp. 1090–1093.

[39] J. Bercoff, R. Sinkus,M. Tanter, andM. Fink, “3d ultrasound-based dy-
namic and transient elastography: First in vitro results,” in Proc. 2004
IEEE Ultrason. Symp., 2004, vol. 1, pp. 28–31.

[40] W. M. Lai, D. Rubin, and E. Krempl, Introduction to Continuum Me-
chanics, 3rd ed. Burlington, MA: Elsevier, 1996.

[41] M. Musgrave, “The propagation of elastic waves in crystals and other
anisotropic media,” Rep. Progress Phys., vol. 22, pp. 74–96, 1959.

[42] J. Dellinger, “Anisotropic seismic wave propagation,” Ph.D. disserta-
tion, Stanford Univ., Stanford, CA, 1991.

[43] T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, “Shear wave
spectroscopy for in vivo quantification of human soft tissues
visco-elasticity,” IEEE Trans. Med. Imag., vol. 28, no. 3, pp.
313–322, Mar. 2009.

[44] M. H. Wang, B. C. Byram, M. L. Palmeri, N. C. Rouze, and K. R.
Nightingale, “On the precision of time-of-flight shear wave speed esti-
mation in homog eneous soft solids: Initial results using a matrix array
transducer,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.
60, no. 4, pp. 758–770, Apr. 2013.



1684 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 9, SEPTEMBER 2013

[45] A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, “A time-efficient
and accurate strain estimation concept for ultrasonic elastography using
iterative phase zero estimation,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 46, no. 5, pp. 1057–1067, May 1999.

[46] M. Burlew, E. Madsen, J. Zagzebski, R. Banjavic, and S. Sum, “A new
ultrasound tissue-equivalent material,” Radiology, vol. 134, no. 2, pp.
517–520, 1980.

[47] M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K.
R. Nightingale, “Quantifying hepatic shear modulus in vivo using
acoustic radiation force,” Ultrasound Med. Biol., vol. 34, no. 4, pp.
546–558, 2008.

[48] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[49] B. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Am. A, vol. 4, no. 4, pp. 629–642, 1987.

[50] M. Rana, G. Hamarneh, and J. Wakeling, “Automated tracking
of muscle fascicle orientation in b-mode ultrasound images,” J.
Biomechan., vol. 42, no. 13, pp. 2068–2073, 2009.

[51] H. Zhao and L. Zhang, “Automatic tracking ofmuscle fascicles in ultra-
sound images using localized Radon transform,” IEEE Trans. Biomed.
Eng., vol. 58, no. 7, pp. 2094–2101, Jul. 2011.

[52] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale
vessel enhancement filtering,” inMed. Image Comput. Comput.-Assist.
Intervent., 1998, pp. 130–137.

[53] K. Topp and W. O’Brien, Jr, “Anisotropy of ultrasonic propagation
and scattering properties in fresh rat skeletal muscle in vitro,” The J.
Acoust. Soc. Am., vol. 107, p. 1027, 2000.

[54] M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and
K. R. Nightingale, “A finite-element method model of soft tissue re-
sponse to impulsive acoustic radiation force,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 52, no. 10, pp. 1699–1712, Oct. 2005.

[55] H. Zhao, P. Song, M. Urban, R. Kinnick, M. Yin, J. Greenleaf, and S.
Chen, “Bias observed in time-of-flight shear wave speedmeasurements
using radiation force of a focused ultrasound beam,” Ultrasound Med.
Biol., vol. 37, no. 11, pp. 1884–1892, 2011.


