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Spatiotemporal Coherence to Quantify Sources
of Image Degradation in Ultrasonic Imaging
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Abstract— Thermal noise and acoustic clutter signals
degrade ultrasonic image quality and contribute to unreli-
able clinical assessment. When both noise and clutter are
prevalent, it is difficult to determine which one is a more
significant contributor to image degradation because there
is no way to separately measure their contributions in vivo.
Efforts to improve image quality often rely on an under-
standingof the type of image degradationat play. To address
this, we derived and validated a method to quantify the
individual contributions of thermal noise and acoustic clut-
ter to image degradation by leveraging spatial and tempo-
ral coherence characteristics. Using Field II simulations,
we validated the assumptions of our method, explored
strategies for robust implementation, and investigated its
accuracy and dynamic range. We further proposed a novel
robust approach for estimating spatial lag-one coherence.
Using this robust approach, we determined that our method
can estimate the signal-to-thermal noise ratio (SNR) and
signal-to-clutter ratio (SCR) with high accuracy between
SNR levels of −30 to 40 dB and SCR levels of −20 to 15 dB.
We further explored imaging parameter requirements with
our Field II simulations and determined that SNR and SCR
can be estimated accurately with as few as two frames and
sixteen channels. Finally, we demonstrate in vivo feasibility
in brain imaging and liver imaging, showing that it is pos-
sible to overcome the constraints of in vivo motion using
high-frame rate M-Mode imaging.

Index Terms— Image quality, image degradation, coher-
ence, clutter, signal-to-noise ratio, signal-to-clutter ratio.
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I. INTRODUCTION

IMAGE quality is highly variable in medical ultrasound.
Poor image quality is common in many applications, often

leading to a high failure rate of clinical exams. For example,
clinical failure rates range from 11% to 64% in obstetrics and
9% to 64% in transthoracic echocardiography [1]–[7]. High
failure rates in these challenging clinical scenarios are due to
various forms of image degradation such as thermal noise and
acoustic clutter which obscure or confound on-axis signals of
interest.

Measuring the contributions of each type of image degra-
dation is crucial to the development of better beamforming
and signal processing algorithms and for the optimization of
pulse sequences to achieve higher success rates in clinical
exams. Depending on whether thermal noise or acoustic clutter
dominates, different approaches can be taken to achieve the
greatest improvements. For example, when thermal noise
dominates, coded excitation or contrast agents may be the
most appropriate next steps, whereas when clutter dominates,
adaptive beamforming approaches or harmonic imaging may
be more appropriate [8]–[16]. Although both thermal noise
and clutter contribute to image degradation, it is not always
straight-forward to determine which one is more significant
for a given scenario because there is currently no way to
separately measure their contributions in vivo. This work pro-
poses a solution based on spatiotemporal coherence to separate
and quantify sources of image degradation in order to shed
light on their role in reducing image quality. These sources
include attenuation, reverberation or multiple scattering, phase
aberration, and off-axis scattering [13], [17]–[23].

Attenuation leads to a low signal-to-noise ratio (SNR) which
causes thermal noise from the electronic components of the
imaging system to dominate and reduces image quality. Phase
aberration also leads to a reduction in SNR due to focusing
errors [24]. SNR can be estimated using temporal correlation
since thermal noise is incoherent across repeated acquisi-
tions [25], [26]. Another approach to estimating thermal noise
involves acquiring a “noise frame” with no prior ultrasonic
transmission [27]. However, it is not known for sure if the
noise characteristics of the imaging system are the same when
it is not transmitting, which limits this approach. Furthermore,
none of these techniques are able to separately measure both
thermal noise and acoustic clutter and as such cannot be used
to understand the relative contributions of each.
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Other forms of image degradation such as reverberation
create acoustic clutter, a temporally stable haze that reduces
visibility and contrast of structures [13], [17]–[20]. For the
purposes herein, acoustic clutter will be defined in the anatom-
ical imaging sense, meaning that it will refer to sources
of non-diffraction limited image degradation that arise due
to interactions between the sound waves and the imaging
medium instead of from the imaging system itself. High
amounts of clutter lead to a low signal-to-clutter ratio (SCR)
which also reduces image quality. Reverberation, also known
as multiple scattering, is the largest source of clutter in
fundamental frequency imaging [18], [28]. Reverberation is
incoherent across the aperture (channel) dimension [29]. Note
that throughout this work, spatial coherence will refer to
coherence measured across the aperture dimension, i.e., across
the transducer elements on the delayed channel data.

Since both thermal noise and acoustic clutter lead to spatial
decorrelation, aperture domain techniques that leverage the
coherence properties of acoustic backscatter have been used
to assess sources of image degradation [12], [26], [29], [30].
These methods are sensitive to thermal noise and most acoustic
clutter but do not fully characterize the relative contribution
of each [12], [30]. Clever simulation approaches and well-
designed phantom or ex vivo experiments can accomplish this
by imaging a medium with and without a layer of material
(such as an abdominal wall) that creates clutter, but this cannot
be performed in vivo noninvasively [18], [31]–[33].

Currently, the only technique to measure clutter magnitude
in vivo requires measuring signal power within a large ane-
choic or hypoechoic region such as the bladder, a large fluid-
filled cyst, or a large blood vessel [17]. This will suffice if
such a region can be manually identified, but that is not always
the case in many clinical imaging scenarios. Furthermore, this
measurement of clutter is not generally representative of all
types and sources of clutter [23]. In addition, this approach
only provides information about clutter at that particular depth
or region of the image rather than throughout the entire field
of view. This makes it difficult to understand the spatial
distribution of clutter in a given imaging scenario.

More recently, Long et al. reported a spatial coherence-
based approach to measure incoherent noise and phase aber-
ration, but this approach groups thermal noise with incoherent
clutter rather than separating them [20]. Morgan et al. also
reported a method based on spatial coherence to estimate sig-
nal components for image formation, but again they grouped
thermal noise together with incoherent acoustic clutter [12].

Herein, we present a technique to separately measure
the thermal noise power and the incoherent acoustic clutter
power [34]. Instead of relying on the presence of an anechoic
region, our approach only requires the presence of speckle.
This simplification makes our method more practical for in
vivo application. In the following sections, we present the
theoretical framework on which this technique is based and
we validate it across a wide range of clinically relevant
noise and clutter levels using simulations. We further explore
strategies for robust implementation and study how the number
of available frames and channels affects accuracy. Finally,
we demonstrate in vivo feasibility in the presence of motion.

II. THEORY

A. Components of the Observed Signal

The acoustic signal measured by the transducer during
an in vivo image acquisition (Y) will be a combination of
uncorrupted tissue signal (S), thermal noise (N ), and acoustic
clutter (C). This observed signal is given by

Y = S + N + C. (1)

The power of the observed signal, PY , can be written accord-
ing to the following equation:

PY =
∑

Y2 =
∑(S + N + C)2

. (2)

Assuming that the tissue, noise, and clutter signals are uncor-
related spatially and temporally [25], [29], the cross-terms in
(2) go to zero and the power of the observed signal can be
written according to (3), where PS = ∑S2, PN = ∑N 2,
and PC = ∑ C2 are the power of the signal, noise, and clutter,
respectively,

PY = PS + PN + PC . (3)

B. Spatial Coherence of Signals

The van Cittert-Zernike (VCZ) theorem describes the coher-
ence of a wave emitted from an incoherent source such
as ultrasonic echoes backscattered from a random field of
diffuse sub-resolution scatterers. This spatial coherence can
be described by the autocorrelation of the aperture function
or the scaled Fourier transform of the transmitted intensity
field [35]–[37]. For a rectangular aperture and apodization,
this becomes a triangle function with a base twice the width
of the aperture. The VCZ theorem is therefore able to predict
the spatial coherence of a signal reflected from a diffusely
scattering medium across the aperture domain, i.e., the time-
delayed channel data. In the absence of thermal noise and
acoustic clutter, the tissue speckle signal is expected to have a
spatial coherence at the focus given by the triangle function,
�[m/M], where m is the channel separation or lag and M is
the total number of channels used for transmit focusing [blue
curve of Fig. 1(a)].

For zero-mean Gaussian noise, the spatial coherence is a
delta function on average [purple curve of Fig. 1(a)] [26].
Acoustic clutter has also been shown to rapidly decorrelate
across the aperture, producing an approximate delta function
as well [orange curve of Fig. 1(a)] [29]. Provided that (3)
holds, the spatial coherence of such a signal is therefore given
by (4) and the pink curve of Fig. 1(a) [26], [29]

RY [m] ∝ PS�[m/M] + PN δ[m] + PCδ[m]. (4)

Equation (4) implies that the spatial coherence curve will
have a drop at lag one proportional to the combined noise and
clutter power. The lag-one coherence therefore encapsulates
the total power of the noise and clutter [13], [26], [30].

The lag-one coherence (LOC) is calculated from the real-
valued delayed channel data, denoted by s, according to (5),
where the lag m is equal to 1, M is the total number of
channels, i indexes the channel dimension, b indexes the beam

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 22,2024 at 19:45:27 UTC from IEEE Xplore.  Restrictions apply. 



VIENNEAU et al.: SPATIOTEMPORAL COHERENCE TO QUANTIFY SOURCES OF IMAGE DEGRADATION IN ULTRASONIC IMAGING 1339

Fig. 1. Theoretical spatial (a) and temporal (b) coherence curves for
each signal component and their coherent summation (S + N + C). The
noise and clutter components were each coherently added to the signal
component at a 0 dB magnitude, i.e., an SNR of 0 dB and an SCR 0 dB.
LOC corresponds to the lag-one coherence points that are estimated by
(5) and (9).

dimension, j indexes the frame dimension, k indexes the axial
dimension, and k1, k2 are the bounds of the axial kernel

Rchan[k, m] =
1

M − m

M−m∑
i=1

∑k2
k=k1

si [k]si+m[k]√∑k2
k=k1

s2
i [k] ∑k2

k=k1
s2

i+m[k]
(5a)

Rchan[m] = M(
Rchan[k, m, b, j ]). (5b)

The function M(·) in (5b) represents computing the mean or
median over axial samples, beams, and frames. Alternatively,
the ensemble spatial coherence estimate proposed by Hyun
et al. could be computed instead according to the following
equation [38]:

Rchan[k, m] =
∑

k,i si [k]si+m[k]√∑
k,i s2

i [k] ∑
k,i s2

i+m [k]
, (6a)

k ∈ [k1, k2], i ∈ [1, M − m]
Rchan[m] = M(

Rchan[k, m, b, j ]). (6b)

Equation (6b) is evaluated by computing the mean or the
median over axial samples, beams, and frames. As compared

to the spatial coherence estimator in (5), the ensemble esti-
mator in (6) applies normalization differently to improve the
stability and robustness of the estimate [38]. The use of (5)
versus (6) as well as the mean versus the median is discussed
further in Section IV-B.

After estimating the lag-one spatial coherence, it can then be
used to calculate the channel SNR according to the following
equation [30]:

SNRchan = Rchan[1]
1 − 1

M − Rchan[1] . (7)

From (4) and Fig. 1(a), it is evident that tissue is partially
coherent across the aperture whereas clutter and noise are
incoherent across the aperture. In other words, the noise
and clutter are indistinguishable from each other across the
aperture dimension and will both contribute to the “noise”
term in the channel SNR calculation. From this result, we can
further write channel SNR in terms of tissue, noise, and clutter
power according to the following equation:

SNRchan = PS

PN + PC
. (8)

Together, (7) and (8) suggest a relation between the spatial
lag-one coherence and the tissue, noise, and incoherent clutter
power.

C. Temporal Coherence of Signals

Across repeated acquisitions, stationary tissue signal is
coherent since speckle is temporally deterministic [blue curve
of Fig. 1(b)]. In addition, acoustic clutter is also temporally
stable, making tissue and clutter indistinguishable in this
dimension [orange curve in Fig. 1(b)] [19], [29]. However,
thermal noise is uncorrelated and can be modeled as a delta
function [purple curve of Fig. 1(b)]. The temporal lag-one
coherence therefore encapsulates the thermal noise power only
[pink curve of Fig. 1(b)]. The temporal lag-one coherence can
be calculated according to (9), where the lag n is equal to 1,
N is the total number of frames, and all other variables have
been defined previously. Note that this is still computed on the
delayed channel data to facilitate comparison with the spatial
lag-one coherence defined in (5)

Rtime[k, n] =
1

N − n

N−n∑
j=1

∑k2
k=k1

s j [k]s j+n[k]√∑k2
k=k1

s2
j [k] ∑k2

k=k1
s2

j+n[k]
(9a)

Rtime[n] = M(
Rtime[k, i, b, n]). (9b)

The function M(·) in (9b) represents computing the mean or
median over axial samples, channels, and beams. Alternatively,
an ensemble temporal coherence estimate analogous to (6)
could be computed according to the following equation:

Rtime[k, n] =
∑

k, j s j [k]s j+n[k]√∑
k, j s2

j [k] ∑
k, j s2

j+n[k]
, (10a)

k ∈ [k1, k2], j ∈ [1, N − n]
Rtime[n] = M(

Rtime[k, i, b, n]). (10b)
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Again, to evaluate (10b), the mean or the median is computed
across axial samples, channels, and beams (see Section IV-B).

After estimating the temporal lag-one coherence, it can
then be used to calculate the temporal SNR according to the
following equation [25]:

SNRtime = Rtime[1]
1 − Rtime[1] . (11)

Since tissue and clutter are temporally stable and thermal noise
is temporally uncorrelated as shown in Fig. 1(b), we note that
tissue and clutter are indistinguishable from each other across
this dimension and as such will both contribute to the “signal”
term in the temporal SNR calculation. From this result, we can
further write temporal SNR in terms of signal, noise, and
clutter power according to the following equation:

SNRtime = PS + PC

PN
. (12)

Equations (11) and (12) relate temporal lag-one coherence to
signal, noise, and clutter power.

D. Solving for Signal, Noise, and Clutter Power

Equations (3), (8), and (12) can be algebraically manipu-
lated to solve for the three unknowns (PS , PC , and PN ). PS
is given by (13), where PY is estimated directly by computing
the power of the channel data and SNRchan is estimated from
the channel data according to (7)

PS = SNRchan PY

SNRchan + 1
. (13)

Either PC or PN can be solved for next, and either approach
leads to equivalent results. Solving for PC first yields (14),
where PY and SNRchan are estimated from the channel data
as explained above and SNRtime is estimated from the channel
data according to (11)

PC = PY SNRtime − PS (SNRchan + 1)

(SNRtime + 1)(SNRchan + 1)
. (14)

Finally, PN can be solved for according to (3). Once PS , PC ,
and PN are solved for, the signal-to-thermal-noise ratio (15),
signal-to-clutter ratio (16), and signal-to-clutter-plus-noise
ratio (17) can be calculated

SNR ≡ PS

PN
, SNRdB ≡ 10log10

( PS

PN

)
(15)

SCR ≡ PS

PC
, SCRdB ≡ 10log10

( PS

PC

)
(16)

SCNR ≡ PS

PN + PC
, SCNRdB ≡ 10log10

( PS

PN + PC

)
.

(17)

Note that (17) is equivalent to (8), but (15) and (16) would
be impossible to estimate without first separating the ther-
mal noise and acoustic clutter. Using (15) and (16), the
contributions of thermal noise and acoustic clutter can be
evaluated separately and compared to determine which one
contributes more to image degradation in any in vivo scenario
and throughout any field of view, assuming valid application
of the VCZ theorem.

III. METHODS

A. Field II Simulations

In order to validate the theory presented in Section II
as well as determine the accuracy and dynamic range of
this method, simulations were conducted using Field II in
MATLAB R2021a (Mathworks, Natick, Massachusetts) [39],
[40]. Simulations are advantageous in this scenario because
they offer a ground truth; by simulating the tissue, clutter, and
thermal noise separately and coherently combining them with
known relative magnitudes, the accuracy of this technique can
be tested over a wide range of SNR and SCR levels.

To create the uncorrupted channel data [Fig. 2(a)],
a 20 mm × 50 mm (xz) tissue phantom with uniform speckle
was first created. The tissue phantom speed of sound was
1540 m/s and there were 16 scatterers per resolution cell.
Imaging was simulated with a 64-element linear array with
0.3 mm pitch (0.53λ) and 65% fractional bandwidth operating
at a center frequency of 2.72 MHz. The Field II sampling
frequency was 80 MHz. The imaging procedure consisted of
128 focused transmissions and receptions with a transmit focal
depth of 4 cm. The 128 beams were evenly spaced across the
20 mm aperture. Dynamic receive beamforming with uniform
apodization was performed. Ten frames were simulated.

The clutter channel data were created using a previously
reported pseudo-nonlinear approach to simulating reverbera-
tion with Field II [33]. Briefly, this approach involves simu-
lating single-path scattering from a set of points whose axial
locations are drawn from an exponential distribution such
that most of them are close to the surface of the transducer.
This distribution led to simulation outcomes that match well
with in vivo measurements. Additionally, this is conceptually
similar to in vivo imaging through the abdominal wall or the
skull where most of the clutter generation occurs in near-field
tissue layers or near-field skull bone.

Each point was simulated individually in Field II. However,
an extra delay was applied to the received channel data for
each individual point to simulate multipath scattering, making
it appear as though the echoes arrived from deeper locations.
The shifted channel data from each point were summed
coherently before applying standard dynamic receive focusing.
This results in delayed channel data with remaining curvature
as opposed to properly delayed and focused channel data that
appears flat [see Fig. 2(b)]. The reverberation scatterers were
placed with a density of ten scatterers per resolution cell
and their axial locations were distributed exponentially with a
mean of 0.5 mm. As discussed by Byram et al. and verified
empirically herein (see Section IV-A), these parameters led to
spatial coherence curves with near delta function appearance,
thereby serving as a sufficient model of clutter for these
purposes [33].

After creating the signal and clutter channel data, the noise
channel data [Fig. 2(c)] were created by sampling the normal
distribution. Ten independent frames were generated. To create
the frames for the signal and clutter data, the channel data
were simply replicated since signal and clutter are temporally
stable. The signal, clutter, and noise channel data were then
combined via coherent summation at all possible combinations
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Fig. 2. Channel data (a)–(c) for each signal component. Transmit focus was 40 mm. The SNR and SCR were each 10 dB for the combined channel
data set (S + C + N) shown in (d). The resulting B-Mode image is shown in (e) on a 70 dB dynamic range.

of signal-to-noise levels and signal-to-clutter levels ranging
from −30 to 40 dB in increments of 5 dB (225 different
combinations). Note that the scaling was performed on the
channel data by calculating power within a 2 mm ROI centered
about the transmit focus. An example channel data set with
10 dB SNR and 10 dB SCR is shown in Fig. 2(d) and the
B-Mode is shown in Fig. 2(e). This process was repeated
for 10 independent realizations of signal + clutter + noise
phantoms.

B. Verification of Assumptions

To verify that the simulated signal, clutter, and noise
components meet the assumptions of our method, the spatial
and temporal coherence curves for each image component
were calculated for representative noise and clutter levels and
compared to the theoretical spatial and temporal coherence
curves. Next, the spatial normalized cross-correlation (NCC)
between each of the signal pairings (signal and clutter, clutter
and noise, signal and noise) was also computed to assess signal
independence. Temporal NCC curves were not computed since
the signal and clutter data are simply replicated to create
each frame so computing NCC across additional temporal lags
would be redundant.

C. Method Implementation

Spatial and temporal coherence were calculated on delayed,
real-valued channel data using a 2 mm ROI centered about
the transmit focus to ensure coherence behavior as predicted
by the VCZ theorem [41]. Real-valued data were used in this
work to reduce computational complexity, but complex-valued
coherence calculations using the complex IQ data could be
performed as well. Importantly, the axial kernel for coherence
calculations was 10λ.

While previously the mean has been used to compute a
spatial coherence estimate [13], [20], [30], [38], we evaluated
alternative approaches to estimating a metric of centrality since
spatial and temporal coherence are not normally distributed.
Alternatives include using the median or using the Fisher z-
transform to normalize the lag-one coherence data before com-
puting the mean and taking the inverse Fisher z-transform. For
the purposes of this work, another option would be to compute
channel and temporal SNR before computing the mean or
median of lag-one coherence, which would amount to not
evaluating (5b) or (9b) before evaluating (7) and (11). We also

evaluated estimating the temporal and spatial coherence values
with the standard equations [(5) and (9)] versus the ensemble
equations [(6) and (10)] to determine if the ensemble equations
provided improved stability.

We additionally designed a “robust” approach to estimating
spatial lag-one coherence. The robust approach involved esti-
mating the entire spatial coherence curve (lags 1 through M)
using the median as a centrality metric, fitting a first degree
polynomial to the coherence curve from lag one to lag M in
the least-squares sense, and then using the equation of that
line to estimate the coherence at lag one. To take into account
the higher variance of the coherence estimate at higher lags,
1/variance was computed for each lag and used as a weight for
the fit routine so that the higher lags with more variance were
weighted less than the lower lags with less variance. Variance
was calculated according to (1 −ρ2)2/(Nsamp − 1), where ρ is
the coherence value and Nsamp is the number of samples used
to form one estimate of ρ [42].

All of the approaches described above were investigated
using the signal + clutter + noise phantoms described in
Section III-A to evaluate their effect on coherence, SNR, and
SCR estimation accuracy as well as the dynamic range of the
method.

D. Minimum Requirements for Data Acquisition

We further evaluated the SNR and SCR accuracy as a
function of the number of frames used for the calculation
and the number of channels used for the calculation. SNR
and SCR were estimated on the signal + clutter + noise
phantoms described in Section III-A for representative SNR
and SCR values. Frame numbers ranging from fifty frames to
two frames and channel numbers ranging from all sixty-four
down to eight channels were tested.

E. In Vivo Demonstration

To investigate the influence of frame rate and in vivo
motion on temporal decorrelation, M-Mode acquisitions were
acquired in two representative in vivo imaging scenarios:
transabdominal liver imaging, which is expected to have a
moderate amount of motion due to proximity to the diaphragm,
and transcranial neuroimaging, which is expected to have less
motion. Two datasets in the liver and two datasets in the
brain were acquired on a healthy adult human volunteer under
protocols approved by the local IRB.
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Fig. 3. Spatial and temporal coherence curves for simulated signal + clutter + noise phantoms at (a) 10 dB SNR and 10 dB SCR and (b) 0 dB SNR
and 0 dB SCR. Shaded regions for simulation coherence curves indicate standard deviation across phantom realizations (shading is not always
apparent due to low standard deviation).

For data acquisition, a P4-2v phased array transducer oper-
ating at 2.72 MHz (pitch = 0.3 mm) and a Verasonics
Vantage 128 system (Verasonics, Kirkland, WA) were used.
For guidance, focused B-Mode images were acquired using
129 evenly spaced focused transmissions and receptions span-
ning an angle of 45 degrees. The transmit focal depth was
8 cm. Dynamic receive beamforming with uniform apodization
was applied. M-Mode acquisitions with a two second ensemble
and 1000 Hz pulse repetition frequency (2000 total RF lines)
were acquired for measuring coherence. M-Mode acquisitions
had a transmit focal depth of 8 cm and a steering angle of
0 degrees, i.e., the central beam from the B-Mode sequence
was repeatedly interrogated.

To investigate how motion influenced temporal decorrela-
tion, normalized temporal correlation matrices were computed
on the beam-summed data to measure similarity across the
two second ensemble [43]. Subsets of contiguous frames with
maximal normalized temporal correlation were also identified
and temporal LOC was computed within these subsets. The
data were also downsampled at factors of two, five, ten, and
twenty-five to determine how frame rate impacts temporal
coherence estimation in the presence of differing degrees of
in vivo motion.

IV. RESULTS

A. Verification of Assumptions

Fig. 3 shows the ground truth and simulated spatial and
temporal coherence curves for the signal, clutter, and noise
components. For these representative cases, the coherence
curve values from the simulated data were all within ±0.05 of
the theoretical values, demonstrating good agreement with
theory as others have confirmed before [20], [33].

We next validated our assumption that the signal, noise,
and clutter components are uncorrelated by computing the
spatial normalized cross-correlation (NCC) between each of
these pairs as shown in Fig. 4. Since these NCC curves
are all near zero (within ±0.02), we can assume that our
simulated signal, clutter, and noise are uncorrelated across the
aperture on average. Furthermore, this demonstrates that our
simulations satisfied the assumptions used to derive (3) from
(1). We expect this assumption to hold true in vivo as well:
The large axial kernel of 10λ that is used for the coherence
calculations provides more independent samples to average

Fig. 4. Spatial normalized cross-correlation between signal, clutter, and
noise components. The shaded regions indicate standard error of the
mean over the 10 simulated signal + clutter + noise phantoms.

over, leading to near-zero cross-correlations despite the finite
aperture size and kernel size [29], [38].

However, it should be noted that this assumption may break
down for more extreme (and likely not clinically relevant) SCR
values: When either PS or PC is very large, it is possible
that the non-normalized cross-correlation between signal and
clutter becomes more significant in relation to PS or PC ,
leading to errors. This is explored in detail in Appendix A.

B. Method Accuracy and Dynamic Range

To determine the best way to implement our method,
we started by comparing ground truth LOC and SNR values
to those estimated with our method using the approaches
described in Section III-C. In Fig. 5, the distributions of LOC
and SNR are shown for a simulated signal + clutter + noise
phantom with 20 dB SNR and 10 dB SCR. The different
centrality metrics are provided in Table I and are also shown
in the relevant histograms of Fig. 5.

First considering the various approaches to calculating tem-
poral LOC as shown in Table I and Fig. 5(a), we see that the
median is the most accurate. This makes sense considering
the high kurtosis and skewness of this distribution. However,
the median of temporal LOC does not yield the most accurate
estimation of SNRtime. Instead, the mean of SNRtime is most
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Fig. 5. Histograms for (a) temporal LOC, (b) the Fisher z-transform of temporal LOC, (c) temporal SNR, (d), spatial LOC, (e) the Fisher z-transform
of spatial LOC, and (f) channel SNR. Distributions were derived from a 2 mm ROI about the transmit focus of one simulated signal + clutter + noise
phantom with 20 dB SNR and 10 dB SCR. Kurtosis (K) and skewness (Sk) are indicated in each panel. Note that the shapes of these distributions
and subsequently the skewness and kurtosis will change for different SNR and SCR levels. Colored lines show the true values as well as distribution
centrality as determined by various approaches (see Section IV-B). Note that the temporal and spatial coherence estimators used here were the
ensemble estimators, i.e., (6) and (10).

TABLE I
COMPARISON OF CENTRALITY METRICS

accurate. Interestingly, even though the Fisher z-transform
of temporal and spatial LOC improved the Gaussianity of
the distributions [Fig. 5(b) and (e)], taking the mean of the
z-transformed LOC distributions did not yield the most accu-
rate results for any quantity (Table I).

Next considering the different approaches to estimating
spatial LOC and SNRchan as shown in Table I and Fig. 5(d),
we see that using the robust spatial LOC estimation tech-
nique described in Section III-C yielded the most accurate
estimations for both. The mean of spatial LOC was the next
most accurate, followed by the median. However, we observed
when plotting full coherence curves that the median of spatial
or temporal coherence provides the most accurate coherence
estimation for lags greater than 1, inspiring the selection

of the median as the centrality metric for the robust line-
fitting approach for spatial LOC estimation described in
Section III-C.

Finally, comparing the use of the ensemble coherence
estimators (ens) versus the standard ones (non-ens), we see
in Table I that the choice makes little difference for temporal
LOC and SNRtime (at least for the tested SNR and SCR
values). However, for Rchan[1] and SNRchan, there was a more
notable difference between the estimators. The most accurate
estimation of Rchan[1] was achieved with the ensemble esti-
mator and the robust approach, but the next most accurate
estimator was the mean of Rchan[1] with the non-ensemble
estimator. The same trend can be seen for SNRchan.

We further investigated the differences between the ensem-
ble and non-ensemble estimators in terms of SNR and SCR
accuracy over a wider range of noise and clutter levels.
Fig. 6 shows the average SNR and SCR accuracy in ten
simulated signal + clutter + noise phantoms over noise and
clutter levels ranging from −30 to 40 dB using either the
ensemble or non-ensemble coherence estimators as well as
either the mean of spatial LOC or the robust approach for
spatial LOC. The mean of temporal SNR was used in each
case. Again, the largest difference was between using or not
using the robust approach as opposed to using the ensemble
estimators or not. In the SCR accuracy plot [Fig. 6(b)], there
is a very clear improvement using the robust spatial LOC
approaches over the mean spatial LOC approaches for SCR
levels of −15 dB or lower. Differences on the higher end of
the SCR accuracy curve are more subtle, and all approaches
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Fig. 6. SNR (a) and SCR (b) estimation accuracy of various approaches for method implementation. The Robust Rc[1] approach refers to using
the robust line fitting technique to estimate spatial LOC as opposed to using the mean of spatial LOC. The lines labeled with “ens” denote usage of
the ensemble estimators for spatial and temporal coherence [(6) and (10)] whereas the lines labeled with “non-ens” denote usage of the standard
estimators for spatial and temporal coherence [(5) and (9)]. All cases use the mean of temporal SNR. For SNR accuracy in (a), each point shows
the mean ± standard error of the mean across clutter levels ranging from −30 to 40 dB SCR. For SCR accuracy in (b), each point shows the mean
± standard error of the mean across noise levels ranging from −30 to 40 dB SNR.

TABLE II
DYNAMIC RANGE

have high accuracy within the mid-range SCR values between
about −15 dB and 15 dB.

To better understand the influence of these approaches
on the effective dynamic range of the method, the dynamic
range was defined as the range of ground truth SNR and
SCR values for which no complex estimations of SNRdB or
SCRdB resulted. Note that in Fig. 6, any complex values were
displayed using the real part only. For more details about
when and why this method may sometimes produce complex
SNRdB or SCRdB estimations, see Appendix B. From the
dynamic ranges shown in Table II, we see that the ensemble
estimator approach improves the lower and upper end of the
SCR dynamic range when using the mean of spatial LOC, but
has no effect on the robust spatial LOC approach. Furthermore,
the benefit of using the robust approach instead of the mean
is highlighted by improved dynamic range on the lower end
for SCR and for SNR.

C. Minimum Requirements for Data Acquisition

Fig. 7 shows the SNR and SCR mean squared logarithmic
error (MSLE) as a function of number of frames or number of
channels for three representative SNR and SCR levels. MSLE
is defined according to the following equation:

MSLE = 1

N

N∑
i=1

(
10log10(yi + 1) − 10log10(ŷi + 1)

)2
(18)

where y and ŷ are the true and estimated SNR or SCR
values on a linear scale and the resulting metric is in units

Fig. 7. SNR and SCR mean squared logarithmic error (MSLE) ver-
sus number of frames used in (a) and (b) and number of channels
used in (c) and (d). For (a) and (b), all 64 channels were used.
For (c) and (d), 10 frames were used. All data points are averages across
10 independently simulated signal + clutter + noise phantoms.

of dB. Looking first at the error versus number of frames in
Fig. 7(a) and (b), we see that the values stabilize at approxi-
mately ten frames, but even with as few as two or five frames
the error is very comparable.

Considering next the error as a function of the number of
channels in Fig. 7(c) and (d), we see that, in general, SNR and
SCR can be estimated accurately with as few as 16 channels.
However, in the lower signal environments, more channels are
needed to maintain SNR estimation accuracy. Interestingly,
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Fig. 8. In vivo case studies investigating the effects of motion on temporal coherence in two representative imaging environments, the brain
(a)–(c) and the liver (d)–(f). (a) B-Mode of brain imaging Case 1. (b) Temporal Correlation Matrix (TCM) for the M-Mode acquisition for Brain Case 1.
Green box indicates the 50 RF line ensemble with maximal correlation which was used to calculate temporal coherence. (c) Temporal coherence
curves for the two Brain Cases calculated over their respective 50 RF line ensembles with maximal coherence. (d) B-Mode of the liver imaging
Case 1. (e) Temporal correlation matrix for the M-Mode acquisition for Liver Case 1 with the green box indicating the 50 RF line ensemble with
maximal correlation. (f) Temporal coherence curves for the two liver cases calculated over their respective 50 RF line ensembles with maximal
coherence.

TABLE III
TEMPORAL LOC VERSUS ENSEMBLE SIZE

there is a slight increase in SCR error for the 10 dB SNR and
SCR case when all 64 channels were used. This may be due to
the choice of using the channels in the middle of the aperture
for the reduced channel number measurements. When almost
all of the channels were being used, the edge elements which
may have lower quality data were being included as well,
which could have contributed to the slight increase in error.

D. In Vivo Demonstration

Finally, we investigated in vivo application of our method
in two representative imaging environments to determine
the effects of motion on temporal coherence estimation and
to show how we can overcome its confounding effects.
An overview of this study is shown in Fig. 8. Normalized
temporal correlation matrices were calculated on the beam-
summed M-Mode data to visualize temporal decorrelation
across the ensemble and to select a contiguous group of RF
lines with maximal temporal correlation under the assumption
that high correlation between RF lines is indicative of minimal
motion between them [43].

TABLE IV
TEMPORAL LOC VERSUS PULSE REPETITION FREQUENCY

From Fig. 8(b), the temporal correlation matrix for the brain
imaging case shown in Fig. 8(a), we see a relatively high
amount of correlation throughout the two second ensemble
as compared to the temporal correlation matrix for one of
the liver imaging cases [Fig. 8(e)]. This observation confirms
our expectations that there was more motion present in the
liver imaging case than the brain imaging case. Using these
temporal correlation matrices, we selected a contiguous group
of 50 RF lines for each imaging case and computed temporal
coherence curves as shown in Fig. 8(c) and (f). For the
two brain cases, the temporal coherence was approximately
stable for the entire 50 lags (50 ms), but the liver cases
showed motion-induced decorrelation with increasing lags.
This highlights the need for either short ensembles or fast
frame rates (or both).

We first investigated the effect of reducing the ensemble
size on temporal LOC calculation as shown in Table III. Here
we see that, in general, reducing the ensemble size leads to an
increase in temporal LOC since there is less time for motion
to cause decorrelation. With only two RF lines in the M-Mode
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TABLE V
In Vivo SNR AND SCR

sequence, temporal LOC was the highest. Since we showed in
Section IV-C that very few frames are required for accurate
SNR and SCR estimation accuracy, we can conclude that as
few as two frames is likely sufficient.

We next investigated temporal LOC as a function of pulse
repetition frequency (PRF) as shown in Table IV. In this
experiment, the number of RF lines was kept constant and
the M-Mode data were down-sampled to emulate lower PRFs.
For the two brain cases, temporal LOC fluctuated for each PRF
but did not markedly decrease as PRF decreased, indicating
that 40 Hz is likely sufficient for this imaging scenario. For the
two liver cases, temporal LOC steadily decreased with decreas-
ing PRF and experienced a large decrease between 100 Hz
and 40 Hz, indicating that 40 Hz is not sufficient to overcome
the amount of motion present in this scenario.

Using two frames of the fully-sampled (1000 Hz) data,
we calculated the SNR and SCR for each imaging case
as shown in Table V. Due to poor spatial coherence curve
behavior at later lags, we were unable to use our robust spatial
LOC estimation technique and instead used the mean of spatial
LOC. The liver cases had higher SNR than the brain cases,
most likely due to the higher attenuation of the skull. The SCR
of the first liver case was higher than the brain cases, but not
the second liver case in which the transmit focus was near a
blood vessel.

Overall, the results of this in vivo study have shown that
motion is a significant factor to take into account and that
the frame rate requirements are dependent upon the amount
of motion present. To better understand how much motion
may be in a given imaging environment and therefore select
an adequate PRF, the temporal correlation matrix and the
temporal coherence curve are useful tools.

V. DISCUSSION

A. Method Accuracy and Dynamic Range

In Section IV-B, we showed that our method accurately
estimates SNR across the entire range tested (−30 to 40 dB
SNR) but that it only accurately estimates SCR within mid-
range SCR values (−20 to 15 dB SCR). The reduction in SCR
estimation accuracy (and the occurrence of complex SCRdB

estimations) at more extreme values of SCR is related to two
reasons explored in Appendices A and B.

The first issue described in Appendix A involves partial
correlations between signal and clutter. One of the assumptions
of our method described in Section II was that the signal,
clutter, and noise components are uncorrelated. We showed in
Section IV-A with Fig. 4 that the normalized cross-correlation
between these components was very small. However, for the
short- and mid-lag region, the NCC between signal and clutter
was non-zero, albeit small. We show in Appendix A that the

non-normalized magnitude of this small partial correlation
can become more significant with respect to either clutter
power or signal power at the more extreme levels of SCR
(when either clutter power or signal power are very low).
These partial correlations lead to extra errors terms in the
derivations of SNRchan and SNRtime as a function of spatial
or temporal LOC which in turn lead to small errors in the
calculation of clutter power and signal power from LOC
measurements. However, we also showed in Appendix A that,
for our simulated data, this power estimation mean squared
error is very small (below 0 dB) for any clinically relevant
SCR values, indicating that this is not a major source of error
in our results and likely not a major source of error in many
applications.

Although partial correlations between signal and clutter may
lead to very small errors in power estimation, they do not
explain why this method produces negative estimates of power
that lead to complex-valued SNRdB and SCRdB estimations
at the more extreme levels of SCR. This issue, described in
Appendix B, stems from inaccuracies in measuring coherence
due to inherent variance in the coherence estimator. For exam-
ple, it is well-known in the coherence literature that negative
estimates of spatial LOC occasionally occur in low signal
environments [13], [44]. As shown in Appendix B, negative
estimates of spatial LOC lead to a negative estimate of PS
with our method, which leads to a negative estimate of SNR
and SCR (or complex-valued SNRdB and SCRdB after taking
the logarithm). This explains the dynamic range limitation of
−20 dB SCR for our method.

On the flip side, our method also has an upper bound
for lag-one coherence defined by the inequality Rchan[1] >
Rtime[1](1−1/M) (derived in Appendix B). If the spatial LOC
and/or temporal LOC estimations violate this inequality, then
our method estimation of PC becomes negative which leads to
a complex SCRdB estimation. Again, this can happen due to
inherent variance in the coherence estimator. Appendix B also
shows that this LOC boundary creates a vertical asymptote
for SCR defined as a function of temporal or spatial LOC; as
SCR increases, it tends towards infinity as it approaches this
asymptote. This explains the upper dynamic range limitation
of 15 dB for our method.

B. Robust Estimation
In this work, we presented a new robust technique described

in Section III-C for estimating spatial LOC based on com-
puting an entire spatial coherence curve (lags 1 through M)
using (6) and using the median as a centrality metric and
then performing a weighted fit of the line to estimate the
lag-one coherence value. In addition to improving the spatial
LOC, SNR, and SCR estimation accuracy, this approach also
extended the dynamic range of this framework to lower SCR
and SNR values as shown in Fig. 6 and Table II. In effect, this
robust spatial LOC estimation approach was able to reduce
occurrences of negative spatial LOC estimations, thereby
eliminating negative PS estimations. This is how the robust
approach was able to improve the lower dynamic range of both
SNR and SCR. Interestingly, it has been previously identified
that at −15 dB and lower, the variance of estimating spatial
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LOC is too high [13]. This is corroborated by the plateau in
SCR accuracy at low SCR values using the mean of spatial
LOC instead [Fig. 6(b) and Table II]. However, we were
unable to use the robust spatial LOC estimation approach on
our in vivo datasets due to poor spatial coherence behavior at
higher lags which is a limitation of this approach.

The robust line-fitting approach for estimating spatial LOC
may be useful for improving the performance of other clutter
estimation or suppression techniques that rely on computing
spatial LOC such as LoSCAN (Lag-one Spatial Coherence
Adaptive Normalization) [13], [45]. It may additionally pro-
vide a simple mechanism for accounting for low-frequency
phase aberration with the proposed noise separation frame-
work. Since low-frequency phase aberration affects the lower
lags in addition to lag one, if the starting lag for the line fitting
procedure were chosen appropriately (e.g., 10% or 20% of the
aperture), the resulting “lag-one” value that would be extrap-
olated would incorporate the loss in coherence from the phase
aberration at those short lags. By estimating coherence with a
starting lag of 1 and then again with a starting lag of 10%–20%
of the aperture, the contributions of phase aberration could be
assessed separately from those of incoherent clutter such as
reverberation. Future work should explore the ability of this
robust spatial LOC estimation technique to account for low-
frequency phase aberration.

Although it was not explored in this work, another strategy
that may provide increased robustness to phase aberration
would be to perform the coherence calculations on complex-
valued data and then take the magnitude of the result instead
of the real part. In the real-valued data, phase aberration
manifests as time shifts, but in the complex-valued data, phase
aberration manifests as phase rotations, which do not affect the
magnitude. Future work should explore the significance of the
increased robustness provided by complex-valued coherence
calculations in the face of high in vivo phase aberration.

C. Clinical Relevance of Noise and Clutter Levels

While there is limited data on the expected range of clutter
levels in vivo, partially due to the lack of a method to fully
assess clutter in vivo, we believe these SNR and SCR ranges
to be clinically relevant. Bladder wall to clutter magnitudes
have been measured in vivo and were found to be between
0 and 35 dB [17]. Other studies of clutter also fall within this
range [18], [23]. In simulation studies, SCNR and SCR ranges
were varied from −20 to 20 dB and showed perceptually
realistic levels of clutter, further confirming that the ranges
simulated herein are more than adequate [20], [46]. In terms
of SNR, previous reports indicate that −20 to 40 dB is a rea-
sonable range to model effects seen in vivo [47]. Furthermore,
our in vivo results in the liver and the brain also fall within
the dynamic range of our method.

D. Limitations

One of the primary challenges in applying a temporal
coherence-based approach in vivo is the assumption that
the signal is stationary. Patient respiration, pulsatile blood
flow, and sonographer hand motion (if applicable) can all
lead to motion and therefore decorrelation across repeated

acquisitions. This would lead to an overestimation in the
amount of thermal noise present which in turn would lead
to an underestimation in the amount of clutter present. High
frame rate imaging with focused transmits or plane wave
synthetic focusing is one possible solution to this [48], [49].
We employed high frame-rate M-Mode imaging to ensure we
performed our calculations on data with minimal frame-to-
frame motion. We found our 1 kHz frame rate to be more
than sufficient for accurate temporal coherence estimation
and additionally showed that the frame rate requirements are
dependent upon the amount of motion present. For the brain
imaging scenario, two frames with a 40 Hz PRF was sufficient,
but for the liver imaging scenario, 40 Hz was too slow and a
higher PRF would be required.

Another limitation of this approach is the need for adequate
transmit focusing to ensure valid application of the VCZ
theorem. For typical focused B-Mode imaging sequences, only
one or a few transmit focal depths are used, meaning that this
analysis can only be performed within ROIs centered about
those transmit foci. However, synthetic focusing can be used
to create transmit focusing throughout the full field of view,
thereby providing an opportunity for full-field assessment [41].
Moreover, since as few as two frames are needed for accurate
coherence estimation, it would be trivial to design a sequence
that acquires a few frames at many different transmit focal
depths. This would facilitate evaluation of the image qual-
ity across the entire field-of-view, allowing SNR and SCR
“images” to be displayed or overlaid on the B-Mode images
similar to how Offerdahl et al. displayed pixel-wise maps of
spatial LOC alongside B-Mode images [50]. Future work will
incorporate such sequences and analysis.

An additional underlying assumption for this derivation
of the VCZ theorem is that the coherence calculations are
performed in a region of speckle. Alternative non-speckle
targets would include specular reflections or highly coherent
targets such as kidney stones and anisotropic muscle fibers,
which could lead to increased spatial coherence, and anechoic
or very hypoechoic regions such as inside a large fluid filled
cavity which would lead to decreased spatial coherence. In the
case of highly increased spatial coherence, this may cause the
method to fail as the boundary of Rchan[1] > Rtime[1](1−1/M)
may become violated, leading to a complex SCRdB value
as discussed in Appendix B. In the case of reduced spatial
coherence, the method may again fail if the spatial LOC
estimate drops below zero, causing both a complex SCRdB

value and a complex SNRdB value as discussed in Appendix B.
Although, if off-axis scattering is prevalent within the anechoic
region, then this may not occur. In practice, these limitations
could be circumvented using real-time B-Mode guidance to
avoid placing the transmit focus within a non-speckle target.

Additionally, it should be pointed out that off-axis clutter
sources such as side lobes are not explicitly removed from the
Field II simulations and as such are grouped in with the signal
term, S. This is consistent with the VCZ theorem deriva-
tion of the triangle function for the signal spatial coherence
curve which includes the presence of side lobes. In order to
separate their small contributions from that of the main lobe
in a uniform scattering medium, the spatial coherence curve
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corresponding to the main lobe could be used instead of the
triangle function [12]. However, in mediums with inhomo-
geneous scattering functions (e.g., strong off-axis scattering
from a neighboring hyperechoic region), the spatial coherence
may be further altered from theoretical predictions [36]. As it
stands, our method is most sensitive to reverberant clutter
which is largely incoherent [29] whereas phase aberration and
off-axis scattering can be weakly coherent [13], [20], [36].

Finally, other limitations of this approach include the
reliance on channel data as opposed to beamformed RF data
or log-compressed pixel data which may be more readily
available from commercial scanners. However, we showed in
Section IV-C that accurate SNR and SCR estimations can
be made with only a small number of channels available
which may allow our approach to be more readily utilized
in commercial scanners. Despite these minor limitations, this
work still provides an important and unique contribution to
the study of image degradation in ultrasonic imaging.

E. Future Applications

Our technique is most relevant to those interested in dis-
tinguishing between the contributions of thermal noise and
acoustic clutter. This is of particular importance in especially
challenging imaging scenarios such as transcranial imaging,
transthoracic echocardiography, and abdominal imaging of
high habitus patients where there remains significant work to
be done improving image quality as well as in blood flow
imaging where blood echogenicity and sensitivity are low.
If thermal noise is found to be the dominating factor, then
contrast agents or coded excitation would be possible ways to
overcome that limitation [8], [9]. If acoustic clutter is found
to be the dominating factor, then harmonic imaging and/or
advanced beamforming approaches such as ADMIRE, SLSC,
MIST, LoSCAN, minimum variance, or deep neural network
approaches may be more applicable [10]–[16]. In addition,
with real-time spatial and temporal lag-one coherence imple-
mentations, SNR and SCR estimations could be used for
adaptive transmit parameter selection [51]–[54].

VI. CONCLUSION

In summary, we have presented a method and implemen-
tation strategy for separating the contributions of thermal
noise and acoustic clutter to image degradation by leveraging
coherence properties of signals. We validated this framework
in realistic simulations across an extensive range of clutter
and noise levels and found that it can estimate SNR and
SCR with high accuracy over a wide range of clinically
relevant noise and clutter levels. We further showed that this
method maintains accurate estimations of SNR and SCR with a
small number of frames and channels, suggesting feasibility of
implementation on commercial scanners. Finally, we proposed
a strategy to circumvent the effects of motion in vivo, further
demonstrating the suitability of our method for quantifying
the effects of in vivo image degradation. This work has the
potential to greatly impact the study of improving image
quality in challenging clinical imaging scenarios.

APPENDIX A
DERIVATION OF SNR WITH PARTIAL CORRELATIONS

In previous derivations of SNR based on the correlation
coefficient, the signal is assumed to be uncorrelated with the
noise sources [25], [41]. We used the same assumptions and
showed in Fig. 4 that the normalized cross-correlation between
the signal, clutter, and noise was small, indicating that they are
approximately orthogonal. However, as shown in Fig. 4, the
signal and clutter cross-correlation is non-zero for the lower
lags. In this Appendix, we investigate what happens when
small cross-terms remain and hypothesize that, when either
the signal power or the clutter power is very small (as is the
case for very high or very low SCR values), the magnitude
of the non-normalized partial correlations may become more
significant.

First, to understand how these partial correlations would
manifest in the definitions of SNRtime and SNRchan, the deriva-
tion of SNR from the cross-correlation coefficient, ρ, must
be revisited. Consider the correlation between two real-valued
signals, S1 and S2, that are each corrupted with thermal noise
(N1 and N2) and clutter (C1 and C2):

ρ =
∑ (S1 + N1 + C1

)(S2 + N2 + C2
)

√∑(S1 + N1 + C1
)2 ∑(S2 + N2 + C2

)2
. (19)

Note that previous derivations have only considered signal and
noise, but here we are explicitly considering noise and clutter
separately [25], [41]. For clarity, we start by considering the
expansions of the numerator and denominator separately. First
considering the numerator, we have

∑S1S2 + ∑S1C2 + ∑ C1S2 + ∑ C1C2

where we have assumed that all of the noise terms
are zero since Gaussian white noise is uncorrelated
with a sufficient window size. The following analysis
could be extended to include small correlations of noise
as well, but this is a much smaller effect. Replacing
�S1S2 with PS , we have the following expression for the
numerator:

PS +
∑

S1C2 +
∑

C1S2 +
∑

C1C2.

Note that we would typically assume the clutter is uncorrelated
with the signal and with itself, but here we are considering the
case that those terms may not be completely zero. Considering
next the expansion of the denominator and zeroing out the
noise terms, we have

√( ∑
S2

1 +
∑

N 2
1 +

∑
C2

1 +
∑

2S1C1
) ×

√( ∑
S2

2 +
∑

N 2
2 +

∑
C2

2 +
∑

2S2C2
)
.
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We can re-write the denominator as follows, subbing in power
terms where appropriate:

√
PS + PC + PN

√
1 +

∑
2S1C1

PS + PC + PN
×

√
PS + PC + PN

√
1 +

∑
2S2C2

PS + PC + PN
.

Using the binomial series expansion defined below
√

1 + x = 1 + 1

2
x − 1

4 · 2
x2 + 3 · 1

6 · 4 · 2
x3 − . . .

+ (−1)n+1 (2n − 3)!!
(2n)!! xn, |x | < 1

we eliminate the square roots with a first-order approximation

(PS + PC + PN )
(

1+
∑S1C1

PS + PC + PN

)(
1+

∑S2C2

PS + PC + PN

)
.

Multiplying through and eliminating a higher-order term yields

(PS + PC + PN )

(
1 +

∑S1C1 + ∑S2C2

PS + PC + PN

)

which further reduces to

PS + PC + PN +
∑

S1C1 +
∑

S2C2.

Bringing together the numerator and denominator, we have

ρ = PS + ∑S1C2 + ∑S2C1 + ∑ C1C2

PS + PC + PN + ∑S1C1 + ∑S2C2
. (20)

Before continuing to derive an expression for SNR, we first
define our error terms for convenience, where ε1 is the cross-
correlation (lag > 0) between the signal and the clutter, ε0 is
the lag-zero cross-correlation between signal and clutter, and
εc is the cross-correlation (lag > 0) between clutter and itself.
We can consider the lag to be across either the channel
dimension or the frame dimension

ε1 ≡
∑

S1C2 +
∑

S2C1 (21)

ε0 ≡
∑

S1C1 +
∑

S2C2 (22)

εc ≡
∑

C1C2. (23)

We can now write

ρ = PS + ε1 + εc

PS + PC + PN + ε0
. (24)

Finally, dividing through by PS yields

ρ =
1 + ε1+εc

PS

1 + PC +PN
PS

+ ε0
PS

. (25)

We can write (25) in terms of temporal LOC by considering
that the relationship between the correlation of the noise-free
signal at lag n, ρS[n], is related to the correlation of signal +
noise + clutter, i.e., ρ[n], by the signal-to-clutter-plus-noise
ratio. That is,

ρ[n] =
1 + ε1+εc

PS

1 + 1
SCNRtime

+ ε0
PS

ρS[n]. (26)

Since the noise-free signal S is temporally stable, ρS [n] =
1 and we can write (26) in terms of temporal LOC

Rtime[1] =
1 + ε1+εc

PS

1 + 1
SCNRtime

+ ε0
PS

. (27)

Alternatively, we could write (25) in terms of spatial LOC
by again considering that the relationship between the corre-
lation of the noise-free signal at lag m, ρS[m], is related to
the correlation of signal + noise + clutter, i.e., ρ[m], by the
signal-to-clutter-plus-noise ratio. That is,

ρ[m] =
1 + ε1+εc

PS

1 + 1
SCNRchan

+ ε0
PS

ρS[m]. (28)

The VCZ theorem for a rectangular aperture and M trans-
mit focusing elements relates ρS[m] and ρ[m] according to
(1 − m/M), allowing us to write

Rchan[1] =
1 + ε1+εc

PS

1 + 1
SCNRchan

+ ε0
PS

(1 − 1/M). (29)

Finally, rearranging terms in (27) and (29) yields equations
for the SCNR as a function of lag-one coherence and signal
power. Starting with (27), we have

SCNRtime = Rtime[1]
1 − Rtime[1] + εtime

(30)

where εtime ≡ (ε1 + εc − ε0 Rtime[1])/PS . Note that the lags
in ε0, ε1, and εc are across the frame dimension in this case.
Considering next (29), we have

SCNRchan = Rchan[1]
1 − 1/M − Rchan[1] + εchan

(31)

where εchan ≡ (
(1 − 1/M)(ε1 + εc) − ε0 Rchan[1])/PS and we

are now considering lags across the channel dimension. Note
that if ε0, ε1, and εc are zero, then (30) reduces to (11) and
(31) reduces to (7).

We next analyzed ε0, ε1, and εc across the channel dimen-
sion and frame dimension as a function of SCR level. From
Fig. 9(a), we see that ε0 and ε1 are nearly indistinguishable
from each another. We also observe that as clutter power
becomes small (SCR is high), the magnitude of ε0 and ε1 rel-
ative to clutter power becomes large. Conversely, as signal
power becomes small (SCR is low), the magnitude of ε0 and
ε1 relative to signal power becomes large. On the other hand,
εc/PC is not dependent upon SCR. It is also nonzero in this
example, indicating that non-zero partial correlations between
clutter and itself (over lags > 0) is possible and can also
contribute to error.

Considering next the error terms across the temporal dimen-
sion shown in Fig. 9(b), we see similar trends, with ε0/PC and
ε1/PC both increasing with increasing SCR and with ε1/PS
increasing with decreasing SCR. In summary, as either signal
power or clutter power becomes too small, the magnitude of
their cross-correlation begins to matter and errors in estimating
SNRtime and SNRchan occur. Partial correlations within the
clutter itself may also contribute to error, though this will vary
across scenarios.

Finally, we computed the signal power and clutter power
mean squared error (MSE) as a function of SCR in Fig. 10.
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Fig. 9. Epsilon error terms normalized by either signal power or clutter
power as a function of SCR. (a) Error terms with cross-correlation
lags across channels. (b) Error terms with cross-correlation lags across
frames. Each point is the mean ± standard deviation across 10 indepen-
dent simulated signal + clutter phantoms (no noise added).

Here we observe that PS MSE steadily increases as SCR
(and therefore PS ) decreases. For high SCR values, PS MSE
remains very low. PC MSE increases for either very low or
very high SCR values and remains small for the mid-range
SCR values. This corroborates with previous observations
showing that SCR estimation is most accurate within mid-
range SCR values. Importantly, PC and PS MSE remain very
low (below 0 dB) within a clinically relevant range of SCR
values, indicating that, in general, this is not a major source
of error for most practical applications.

APPENDIX B
DERIVATION OF LAG-ONE COHERENCE BOUNDS

Here we take a closer look at why our method may fail
to produce numerically valid estimates of SNR or SCR in
certain ranges. For instance, within some ranges of SCR levels,
the estimated SNR or SCR may be negative (and complex
after taking the logarithm) even though this is not physically
possible. Based on (16), SCRdB can only be complex if the
estimated PS or PC is negative. If PC < 0, then SNRchan >
SNRtime based on (13) and (14). This would further imply
based on (7) and (11) that, for PC to be negative, Rchan[1] >
Rtime[1](1 − 1/M) would have to be true.

Fig. 10. Mean squared error (MSE) for PC and PS across 10 inde-
pendent signal + clutter + noise phantoms with varying SCR. SNR
was set to 30 dB. PC and PS MSE were calculated on a linear scale,
normalized by PC or PS , respectively, and then converted to units of dB
for plotting. The gray shaded region indicates the range of SCR values
that are relevant for in vivo imaging.

Fig. 11. SNR (a), (b) and SCR (c), (d) as a function of spatial LOC
(“Rc[1]”) and temporal LOC (“Rt[1]”). Temporal and Spatial LOC were
computed by (10) and (6), respectively. Dotted lines in (c) and (d)
correspond to asymptotes defined by Rchan[�] = Rtime[�](� − �/M) and
Rtime[�] = Rchan[�]/(� − �/M), respectively.

Considering instead what would need to happen for PS < 0,
we see by considering (13) and assuming PY > 0 that SNRchan

would need to be less than zero. This would further imply
via (7) that Rchan[1] would need to be less than zero. From
this analysis, we see that SCRdB will be complex if either
Rchan[1] < 0 or Rchan[1] > Rtime[1](1 − 1/M), which should
not happen but nevertheless does happen due to estimation
error. Interestingly, we confirmed with our simulation data that
each occurrence of a negative PS estimation was accompanied
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by a negative Rchan[1] estimation and each negative PC esti-
mation was accompanied by a violation of the inequality
Rchan[1] > Rtime[1](1 − 1/M).

Considering now what would need to occur for SNRdB

estimation to be complex, we see from (15) that either
PS or PN would need to be negative. From analysis of
(3), (7), (8), (13), and (14), it can be shown that, for PN to
be negative, either M < 1 or PY < 0 would need to be true,
neither of which is possible. Therefore, the only way for this
method to produce a complex SNRdB value is if Rchan[1] < 0.

We next visualized SNR and SCR as a function of spatial
LOC and temporal LOC in Fig. 11 to understand how they are
related to these bounds on LOC. In Fig. 11(a) and (c), we see
that SNR and SCR decrease rapidly as spatial LOC goes to
zero. In Fig. 11(b), SNR increases rapidly as temporal LOC
goes to 1 which is expected based on (11). In Fig. 11(c) and
(d), the SCR curves each approach a vertical asymptote defined
by Rchan[1] = Rtime[1](1−1/M) and Rtime[1] = Rchan[1]/(1−
1/M), respectively. If Rchan[1] or Rtime[1] pass this threshold
due to errors in estimating coherence, SCR is undefined.
As discussed above, this leads to a negative estimation of PC
and therefore a complex estimation of SCRdB. In comparison,
SNR is defined for any values of spatial or temporal LOC
within (0, 1). This makes the method estimations of SNRdB

less susceptible to becoming complex than estimations of
SCRdB.
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