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Computationally Efficient Implementation
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Abstract— Aperture domain model image reconstruction
(ADMIRE) is a useful tool to mitigate ultrasound imaging
artifacts caused by acoustic clutter. However, its lengthy run-time
impairs its usefulness. To overcome this drawback, we evaluated
the reduced model methods with otherwise similar performance
to ADMIRE. We also assessed other approaches to speed
up ADMIRE, including the use of different levels of short-
time Fourier transform (STFT) window overlap and examin-
ing the degrees of freedom of the model fit. In this study,
we conducted an analysis of the reduced models, including
those using Gram–Schmidt orthonormalization (GSO), singular
value decomposition (SVD), and independent component analy-
sis (ICA). We evaluated these reduced models using the data
from simulations, experimental phantoms, and in vivo liver scans.
We then tested ADMIRE’s performance using full, GSO, SVD,
and ICA–fourth-order blind identification (ICA-FOBI) models.
The results from simulations, experimental phantoms, and in vivo
data indicate that a model reduced using the ICA-FOBI method
is the most promising for accelerating ADMIRE implementation.
In the in vivo liver data, the improvements in contrast relative
to delay-and-sum (DAS) using a full model, GSO, SVD, and
ICA-FOBI models are 6.29 ± 0.25 dB, 11.88 ± 0.90 dB, 9.01 ±
0.67 dB, and 6.36 ± 0.27 dB, respectively; whereas, the contrast-
to-noise ratio (CNR) improvement values in the same order are
0.04 ± 0.06 dB, −1.70 ± 0.17 dB, −1.51 ± 0.19 dB, and 0.12 ±
0.07 dB, respectively. The implementation of ADMIRE using the
reduced model methods can decrease ADMIRE’s computational
complexity over three orders of magnitude. The use of a 50%
STFT window overlap reduces ADMIRE’s serial run time by
more than one order of magnitude without any remarkable loss
of image quality, when compared to the use of a 90% window
overlap used previously. Based on these findings, a combination of
the ICA-FOBI model and the use of a 50% STFT window overlap
makes the ADMIRE algorithm more computationally efficient.

Index Terms— Aperture domain signal, beamforming, dimen-
sionality reduction, image quality, in vivo, medical ultra-
sound, physical model, reverberation clutter, signal processing,
simulation.

I. INTRODUCTION

ULTRASOUND has been used extensively as a medical
imaging modality, with an excellent safety record. It is

also a real-time imaging method and is readily accessible and

Manuscript received December 2, 2018; accepted June 22, 2019. Date
of publication June 26, 2019; date of current version September 25, 2019.
This work was supported in part by NIH under Grant R01EB020040
and Grant S10OD016216-01 and in part by NSF under Grant 1750994.
(Corresponding author: Kazuyuki Dei.)

The authors are with the Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37235 USA (e-mail: kazuyuki.dei.@.vanderbilt.edu).

Digital Object Identifier 10.1109/TUFFC.2019.2924824

affordable [1]. For these reasons, ultrasound imaging is one of
the most frequently used tools for diagnosis and therapeutic
guidance [2]–[4].

However, the imaging artifacts frequently encountered
in clinical ultrasound are still problematic and impair its
usefulness. These artifacts degrade ultrasound image qual-
ity, allowing a clinician to misinterpret an image, and
obscure diagnosis [5]. The widely reported artifacts include:
1) beamwidth and off-axis artifacts caused by intrinsic char-
acteristics of acoustic waves, decreasing spatial resolution,
and contrast [6]; 2) attenuation artifacts producing acoustic
enhancement and shadowing, related to the errors in atten-
uation of acoustic signals propagating through tissues [7];
3) speed of sound artifacts, which are related to sound speed
inhomogeneity in tissue, locally distorting wavefront of prop-
agating and scattering waves (i.e., phase aberration) [8], [9],
and also producing inconsistent images with actual appearance
in the presence of gross sound speed errors [10]; and 4) rever-
beration artifacts, which occur when a transmitted signal is
reflected back and forth between two interfaces during signal
acquisition [11], which may severely degrade the images in
modern ultrasound platforms [12]–[14].

To mitigate such artifacts, numerous beamformers have
been developed [15]–[22], including a model-based beam-
former called aperture domain model image reconstruction
(ADMIRE) introduced by our group [14], [23]. Others have
also recently applied these model-based methods to acoustics
more generally [24], [25]. In the ADMIRE algorithm, we cre-
ate a model based on the physics of wave propagation includ-
ing multipath scattering. ADMIRE uses the model predictors
to reconstruct decluttered images after decomposition and
selection processes to identify scattering signals from the
region of interest (ROI), as shown in Fig. 1. A reasonable anal-
ogy to ADMIRE would be electroencephalography (EEG) and
magnetoencephalography (MEG) source localization meth-
ods [26], [27].

In our previous studies, we evaluated and demonstrated
the algorithm’s performance and ability to mitigate ultra-
sound artifacts including off-axis, reverberation, and phase-
aberration [23], [28]. ADMIRE is also robust to sound speed
deviation, minimizing the speed of sound artifacts caused
by gross sound speed mismatch [29]. ADMIRE can also be
adapted to full field insonification sequences (i.e., plane wave
imaging) to recover image quality in challenging high clutter
environments with high levels of thermal noise [30]. Based on
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Fig. 1. Overview of ADMIRE algorithm. When implementing ADMIRE, the signal to the left is decomposed into wavefronts scattered from within the ROI
and unwanted signals scattered from the clutter region. After decomposition, ADMIRE then reconstructs only signals from the ROI to form the signal on the
right. Both decomposition and reconstruction processes are applied to the frequency domain data at each depth.

these findings, ADMIRE is a useful tool in reducing imaging
artifacts in medical ultrasound.

However, a major problem with ADMIRE is its computa-
tional complexity, which impairs its usefulness. ADMIRE has
high computational requirements caused by the large model
and the nonlinear elastic-net regularization. The decomposition
process must be repeated for every frequency per depth,
further increasing the computational cost. We are interested
in the reduced model methods and other strategies to reduce
complexity without sacrificing improvements.

Previously, we examined the role of singular value decom-
position (SVD) in reducing computational complexity [31].
It was computationally more efficient using orthonormal col-
umn vectors that are linearly independent, but its performance
was reduced compared to ADMIRE. In this study, we aim
to conduct a more comprehensive analysis to identify the
usefulness of dimensionally reduced models when imple-
menting ADMIRE. Here, we consider other models reduced
using Gram–Schmidt orthonormalization (GSO) [32], [33] and
independent component analysis (ICA) [34], in comparison
with the images obtained using a full model or a model
reduced using SVD. Furthermore, in considering other effects
to accelerate ADMIRE, a simple solution may be to reduce
the number of sliding window steps through depth. Similar to
other beamforming methods [19], [35], [36], ADMIRE uses
aperture domain signals in the frequency domain, incorporat-
ing a short-time Fourier transform (STFT) with a 90% window
overlap. Based on these findings, we also evaluate the effects
of different levels of STFT window overlap on image quality
and run-time. In addition, we investigate the effect of the
degrees of freedom selected during the model fit. Our ultimate
goal is to enable an efficient and fast ADMIRE implementation
while, otherwise, preserving its performance, thereby making
ADMIRE more useful in real clinical applications.

II. METHODS

A. Overview of ADMIRE
Here, we summarize several important steps in the

ADMIRE algorithm, while other details are available in [23]

and [28]–[30]. The ADMIRE model matrix X is constructed
using model predictors, which is initially complex: X ∈
��×�, where� is the number of aperture elements and� is
the total number of model predictors. The complex form of the
ADMIRE model is converted into real (�) and imaginary (�)
components and tiled as the following matrix form:

X =
[�{ps j (x; t, ω)}� −�{ps j (x; t, ω)}�
�{ps j (x; t, ω)}� �{ps j (x; t, ω)}�

]
(1)

where j indexes model space sampling, ps j is the model
predictor sampled at j th model space, x is the transducer
aperture location, t and ω are the time and frequency to
localize the signal, X ∈���×��. The model predictor can be
formulated by the location (xn, zn), where a signal is reflected
from by delayed time τn , along with amplitude modulation
term An(x) across the transducer aperture [23], given by

psn(x; t, ω) = An(x)e jωτ(x;xn,zn,τn ). (2)

Using the model matrix in (1), the frequency domain data at
a single frequency from each depth, denoted as y ∈ ���×�,
in Fig. 1, can be expressed as a linear model, given by

y = Xβ (3)

where β is the model coefficients for the real and imaginary
components of the model predictors in X : β ∈ ���×�. Often,
when implementing ADMIRE, the total number of model
predictors is over a hundred times greater than the number
of aperture elements (i.e., � < �), meaning that the solution
of the linear model in (3) is a highly ill-posed inverse problem.
To make the ill-posed problem stable, elastic-net regularization
is used in model decomposition [37], as follows:
β̂ = arg min

β

(‖y − Xβ‖2+λ
(
α‖β‖1+(1 − α)‖β‖2

2/2
))

(4)

where the first term represents the ordinary least squares, and
the second term is the elastic-net regularization, combining
the L1 norm with L2 norm, denoted as ‖β‖1 and ‖β‖2,
respectively, using the tunable parameters of α and λ that
determine the degree and type of regularization.
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Fig. 2. ADMIRE model space is illustrated. The ADMIRE model space
is sampled in two separated subspaces: 1) ROI subspace and 2) clutter
subspace. Because it is also necessary to identify SOI using model predictors,
the ADMIRE model space is finely sampled in the ROI subspace but not in
the clutter subspace (i.e., ΔROI < Δclutter).

The last important step is to reconstruct the signals of
interest (SOI) by selecting only model predictors and the
corresponding coefficients within the region of interest (ROI),
which is usually specified as an elliptical zone determined by
the expected lateral and axial resolutions [23]

yROI = XROIβ̂ROI (5)

where yROI is the reconstructed signal of interest, which we
also call the decluttered signal, XROI is the selected model
predictors, and β̂ROI is the corresponding coefficients. The
decluttered signals in (5) are converted back into the original
time domain using the inverse STFT (ISTFT) [38].

B. Model Space and Tunable Parameters

The ADMIRE model predictors in (2) are typically sampled
from two subspaces, spatially divided into inside and out-
side ROI. We call the former ROI subspace, whereas the latter
is referred to as clutter subspace, as demonstrated in Fig. 2.
We rewrite the ADMIRE model matrix in (1), expressed as

X = [XROI Xclutter] (6)

where XROI is the model predictors from the ROI subspace
and Xclutter is the predictors from the clutter subspace. We also
note that the ADMIRE model space is finely sampled in the
ROI subspace, but coarsely sampled in the clutter subspace
(i.e., ΔROI < Δclutter). When reducing the ADMIRE model
dimension, we apply a dimensionality reduction method sepa-
rately to XROI and Xclutter while preserving the unique aspect
of each region. The reduced models from each subspace,
having an �×� complex matrix, are combined, leading to
Xreduced ∈ ��×��. A complex form of the reduced model is

TABLE I

ADMIRE DEFAULT PARAMETERS

then decomposed into real (�) and imaginary (�) components
and titled, the same as X in (1), where Xreduced ∈ �2�×4�.

It is also important to note that the ADMIRE algorithm
and performance are primarily influenced by two factors. One
is the model space sampling for each subspace as described
above, and the other is the elastic-net regularization parame-
ters, α and λ, in (4). Here, we focus only on the role of
λ that controls the degrees of freedom (df ) in this study
because the dimensionality reduction will eliminate model
space sampling as an important factor for run-time leaving
λ as the most significant remaining factor [39]. We scaled
a default value of λ set as 0.0189(y�y)1/2. The default λ
value and other ADMIRE parameters were determined in our
previous findings [23], [28], [30], as indicated in Table I. Note
that we implemented ADMIRE using a 90% STFT window
overlap unless otherwise specified.

C. Computational Complexity

The total computational cost of the ADMIRE algorithm
is high when compared to conventional delay-and-sum
(DAS) beamforming. ADMIRE requires additional oper-
ations, including STFT, model decomposition, selection/
reconstruction, and the ISTFT, which all increase its com-
putational complexity. Table II summarizes the additional
computational complexity of ADMIRE beyond that of DAS.
When comparing each computational order, model fitting has
a computational burden related to the number of predictors
and predictors used, given by O(u3 + u2v), where u is the
number of nonzero coefficients when fitting the data and v
is the total number of model predictors in the matrix X in
(1) [23], [30], [37]. Based on this, a reduced model could
substantially decreases the computational time. Because the
decomposition process must be repeated for every single
frequency through depth, decreasing the total number of the
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TABLE II

ADMIRE COMPUTATIONAL COMPLEXITY BEYOND DAS

sliding window steps through depth (i.e., r ) should also reduce
complexity.

D. ADMIRE Using Dimensionality Reduced Models

We investigated several approaches for reducing the size
of the model X in (1). Specifically, we examined the role
of GSO [32], [33], SVD [40], [41], and ICA [34], [42].
In this section, we briefly look into each of these methods
to understand how the transformed basis vectors construct a
reduced model used for a computationally efficient ADMIRE
implementation.

1) Gram–Schmidt Orthogonalization: Gram–Schmidt
Orthogonalization (GSO), also called the Gram–Schmidt
process, is a classic approach to constructing an orthonormal
set from a given set of linearly dependent vectors [33].
The process starts with any one of the vectors in the set
and sequentially forms the orthonormal vectors. Different
outcomes are obtained from different orderings [32]. The
dimension of a reduced model after applying GSO is Xgso ∈
��×��, much less than the original X (i.e., �� < �).
We randomly reordered the model predictors in each subspace
before applying GSO.

2) Singular Value Decomposition: Singular value decompo-
sition (SVD) is widely used in matrix dimensionality reduction
to make computations more efficient and decrease computa-
tional complexity. We use the SVD algorithm on subspaces
of the ADMIRE model matrix in (6) to reduce the number
of model predictors in each subspace. An SVD-based reduced
model, denoted as Xsvd, has the dimension reduced to Xsvd ∈
��×��, the same as with Xgso.

3) Independent Component Analysis: Independent compo-
nent analysis (ICA) removes higher order correlation [43],
[44], leading to a set of separate independent sources that
are statistically independent vectors. Given a linear mixture
of underlying sources, we can reconstruct the underlying
source with an unmixing matrix W . The aim of using ICA
here is to solve the unmixing matrix and to form a reduced
model using the columns of W−1 that are the independent
components of the ADMIRE model, indicated by Shelens

[44]. The model reduced using ICA is statistically independent
but not orthogonal and have a non-Gaussian distribution [34].
The model dimension after applying ICA is also by X ica ∈
��×�� as with the other methods.

Because there is no analytical form to determine the
unmixed matrix W , the ICA solution must involve estimation
techniques [34]. These estimation algorithms are based on
information theoretical principles, using maximum-likelihood,
information maximization, marginal entropy, negentropy or
non-Gaussianity maximization, and mutual information max-
imization, which are all related to one another [45]. In this
study, we mostly used an ICA algorithm called the fourth-order
blind identification (FOBI), which is probably the simplest
method for performing ICA [44], [46]. In addition, we selected
and compared four other ICA algorithms accounting for com-
plex values scenarios: 1) RobustICA that is a deflated version
of fastICA [42], [47] with complex data support [48], [49];
2) complex ICA-EBM, representing complex ICA by entropy
bound minimization (EBM) [50]–[52]; 3) second-order blind
identification (SOBI) [53]; and 4) an algorithm for multiple
unknown signals extraction (AMUSE) that may be useful in
time structured signals or time series [54].

E. ADMIRE With Different Levels of STFT Window Overlap
When considering other effects to make ADMIRE more

efficient and faster, we tested the impact of different levels of
STFT window overlap on image quality using the simulated
speckle-based target phantoms. We applied the STFT window
overlap ratio, ranging from 0.05 to 0.95, when implementing
ADMIRE using full and reduced models. We then assessed
the resulting ADMIRE images qualitatively and quantitatively.
In addition, we simulated a point target to compare point
spread functions derived from DAS and full model ADMIRE
implemented with a nonoverlap and 50% and 90% overlaps
with the STFT window. We also quantified the full-width at
half-maximum (FWHM) of the lateral beam profiles.

F. Simulated Phantom Data
We simulated speckle-based target phantoms with a 5-mm-

diameter and 3-cm-deep anechoic cyst using Field II [55], [56].
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TABLE III

FIELD II SIMULATION PARAMETERS

Fig. 3. Example to generate 0-dB SCR channel data by adding reverberation
clutter to uncluttered (SOI) channel data. Top: Centered A-line channel data.
Bottom: Corresponding simulated anechoic cyst B-mode images. The scaling
factor, a, is computed by (7).

The background speckle was fully developed with 25 scatterers
per resolution cell [57]. We generated six speckle realizations.
A linear array transducer was modeled with 3.0-MHz center
frequency and 60% fractional bandwidth with transmit focal
depth of 3 cm, as summarized in Table III. We also added
various levels of reverberation clutter relative to SOI, given
by signal-to-clutter ratio (SCR)

SCR = 10 log 10

(
PowerSOI

PowerClutter

)
. (7)

We simulated −20-, −10-, 0-, 10-, and 20-dB SCRs using
an efficient pseudo nonlinear simulation tool [58], [59]. The
tool allows for the fast simulation of realistic reverberation
clutter, providing a paired channel data set for SOI and clutter.
We then apply a scaling factor, computed by (7) to cluttered
channel data for each SCR case. The scaled cluttered data are
summed with the corresponding SOI channel data. The process
is repeatedly applied to each A-line channel data. Fig. 3 shows
an example to generate 0-dB SCR simulated data.

We evaluated the resulting images formed after ADMIRE
using full and reduced models. We applied the default value

TABLE IV

C5-2 CURVILINEAR TRANSDUCER AND
VERASONICS SYSTEM SETTINGS

of λ scaled by 1/2, (i.e., 0.0189
√

y�y/2). We tested the
usefulness of reduced models using the methods in comparison
with images formed using a full model. We also added DAS
images in order to quantify relative improvements of ADMIRE
images from DAS beamforming.

G. Experimental Phantom Data
We also applied ADMIRE using these reduced models to

the experimental phantom data to test whether the simula-
tion results correlate with experimental findings. We acquired
data from a tissue-mimicking phantom (Multi-Purpose Multi-
Tissue Ultrasound Phantom 040GSE, CIRS Inc., Norfolk, VA,
USA) using a Verasonics Vantage Ultrasound System (Vera-
sonics, Inc., Kirkland, WA, USA). We used a C5-2 curvilinear
array transducer to acquire 128 A-lines over a 75◦ sector,
which is the same probe setting we used for our previous
study [29]. Table IV summarizes the settings for the curvilinear
probe and the Verasonics ultrasound system.

The experimental data were beamformed using DAS,
ADMIRE using a full model and three reduced models
based on: 1) GSO; 2) SVD; and 3) ICA-FOBI methods.
In addition, with the experimental data, we compared five ICA
algorithms using image quality metrics and speckle statistics.
We applied the default value of λ scaled by 1/2 in the
implementation of ADMIRE.

H. In Vivo Data
We acquired in vivo abdominal and liver data from a healthy

human subject using the same Verasonics ultrasound system
and the same C5-2 transducer. The acquisition sequences and
parameter settings are also indicated in Table IV. We applied
ADMIRE to the in vivo data using the same models tested
in the experimental data. We also applied five different λ
parameters, scaled by factors of 1/10, 1/5, 1/2, 1, and 2, to the
default λ value to test how the parameters of λ (i.e., the degrees
of freedom df ) impact ADMIRE’s performance and efficiency
using a reduced model. The Vanderbilt University Institutional
Review Board approved the study.

I. Image Quality Metrics and Speckle Statistics
We compared the outcomes using contrast (C), contrast-to-

noise ratio (CNR), and speckle signal-to-noise ratio (SSNR) of
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Fig. 4. B-mode images of simulated anechoic cyst phantom reconstructed after applying DAS, ADMIRE using a full model and three reduced models based
on the GSO, SVD, and ICA-FOBI methods. The phantom has 5-mm-diameter 3-cm-deep anechoic cyst simulated using Field II. Reverberation clutter ranging
from −20- to 20-dB SCRs was also added using our pseudo nonlinear simulator [58]. DAS B-mode image in the top left indicates two regions used for image
quality metrics and speckle statistics measurements. We denote lesion and background, corresponding to inside and outside an anechoic structure, as L or B,
respectively. The dynamic range is 60 dB.

B-mode data acquired from simulations, experimental tissue-
mimicking phantoms, and in vivo scans

C = −20 log 10

(
μl

μb

)
(8)

CNR = 20 log 10

⎛
⎝ |μl − μb|√

σ 2
l + σ 2

b

⎞
⎠ (9)

SSNR = μb

σb
(10)

where (μl , σ 2
l ) and (μb, σ 2

b ) are the value of (mean, vari-
ance) of the uncompressed enveloped data inside and outside
anechoic or hypoechoic structures, respectively.

J. Timing Measurements
We evaluated timing reduction using simulated phantoms

and in vivo liver data. We measured the total single-core
serial run time for each case of ADMIRE in MATLAB (The
Mathworks Inc., Natick, MA, USA) on a 3.40-GHz CPU
desktop computer. Timing measurements were conducted in
several scenarios, including ADMIRE using various λ values
and with different levels of STFT window overlap ratio.
We were also interested in computing the computational order
from the total number of model predictors and the number of
nonzero coefficients using full and reduced models through
depth.

III. RESULTS

A. Reduced Model Evaluation Using Simulations

Fig. 4 shows the B-mode images of a simulated anechoic
cyst phantom reconstructed after applying ADMIRE using
a full model and three reduced models based on the GSO,
SVD, and ICA-FOBI methods, along with conventional DAS
beamforming. When comparing the resulting ADMIRE images
qualitatively, there are no noticeable differences in moderate
or lower clutter environments. However, there are substan-
tial discrepancies in image quality between each model in
high clutter scenarios (i.e., the range of SCR ≤ −10 dB).
They all have image artifacts at −20-dB SCR. The images
obtained from ADMIRE using the GSO-based reduced model
also include very obvious image artifacts in the presence of
clutter of −10-dB SCR. It is also interesting to note that the
ICA-FOBI reduced model may provide improved performance
of ADMIRE, compared to the other two reduced models,
throughout the range of clutter levels.

The matched quantitative results are presented using a box
plot shown in Fig. 5. For both contrast and CNR values,
we measured relative improvements of post-ADMIRE images
to DAS B-mode images, but SSNR values were compared
to the ideal value of 1.91 [57]. Unsurprisingly, ADMIRE
improves contrast and CNR in moderate clutter environments
while preserving speckle statistics in the cases of ADMIRE
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Fig. 5. Box plots of the matched quantitative results of the B-mode images shown in Fig. 4, including (a) contrast (ΔC) and (b) CNR (ΔCNR) improvements
relative to DAS, along with (c) SSNR. There are six speckle realizations. These results show good correlation with qualitative indications, as demonstrated
in Fig. 4.

Fig. 6. B-mode images reconstructed using experimentally acquired data on a tissue-mimicking phantom. The images were formed after applying DAS and
ADMIRE using different models when implemented, including a full model and three reduced models using the GSO, SVD, and ICA-FOBI methods. The
dynamic range is 60 dB. The DAS B-mode image also indicates two sets of regions used to compute contrast, CNR, and SSNR. The measured contrast,
CNR, and SSNR values were averaged with the standard deviation. The corresponding results are summarized in Table V. (a) DAS. (b) Full model. (c) GSO
model. (d) SVD model. (e) ICA-FOBI model.

using full or ICA-based model. These findings are consistent
with the results reported in our previous study [30].

In comparison with the performance of ADMIRE using
three reduced models, the qualitative and quantitative results
are consistent, indicating that ADMIRE performance using
the ICA-FOBI reduced model is the most similar to that of
using a full model. It is worth noting that ADMIRE using
an SVD-based reduced model provides higher contrast while
decreasing the value of CNR and SSNR. These SVD findings
have been reported in our previous study [31], which may
produce dark region artifacts [60] and decrease the dynamic
range [61].

B. Reduced Model Evaluation Using Tissue-Mimicking
Phantom

Fig. 6 demonstrates the methods on the experimental phan-
tom data. The figure also includes the matched DAS B-mode

image, indicating two sets of regions used to calculate image
quality metrics and SSNR. We then averaged the measured
image metrics, along with the standard deviation. The matched
contrast, CNR, and SSNR values are summarized in Table V.
These results from experimental tissue-mimicking phantom
data are mostly consistent with the results reported in the
simulations, suggesting that the ICA-FOBI reduced model
allows ADMIRE to perform as well as ADMIRE performance
using a full model.

C. Reduced Model Evaluation Using In Vivo Liver Scan Data

Fig. 7 evaluates the results of using the reduced models with
in vivo abdominal liver scan data. Fig. 7(a) demonstrates four
sets of ADMIRE images reconstructed from implementing
ADMIRE with different models, with various values of the
tunable parameter λ (the default value set as 0.0189

√
y�y).
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Fig. 7. In vivo abdominal and liver B-mode images formed from the data acquired using a Verasonics Vantage Ultrasound System with a C5-2 curvilinear
array transducer. ADMIRE B-mode images were obtained from ADMIRE using a combination of different models and tunable parameter λ, in order to
examine how the ADMIRE performance relates to the model and the degrees of freedom that are controlled by the parameter of λ. The top in (a) shows the
resulting images using ADMIRE with a full model as a function of λ. The rest in (a) is the ADMIRE images using a model reduced using the GSO, SVD,
and ICA-FOBI methods. Each demonstrated image indicates the total single-core serial run time to reconstruct in the lower right corner. We also include the
matched DAS B-mode image in (b), indicating two regions, L (lesion or hypoechoic structure) and B (background), used to measure image quality metrics
and speckle statistics. The dynamic range is 60 dB. The matched quantitative results of contrast, CNR, and SSNR as a function of λ are reported in (c).
(a) ADMIRE B-mode images as a function of λ or degrees of freedom (d f ). (b) DAS B-mode with mask regions. (c) Contrast, CNR, and SSNR as a
function of λ.

The timing is included in the figure. Fig. 7(b) shows the
matched DAS B-mode image, and Fig. 7(c) reports the
matched quantitative results of contrast, CNR, and SSNR as
a function of λ. The metrics were calculated using the mask
regions, L and B, indicating inside and outside anechoic or
hypoechoic tissue structures, respectively, in Fig. 7(b). Note
that ADMIRE using an ICA-FOBI reduced model performs

as well as the use of a full model as a function of λ. The
finding suggests that the ICA-FOBI reduced model has no
significant impact when varying the value of λ. It is also
noted that ADMIRE using the GSO- or an SVD-based reduced
model may increase the performance if λ is adaptively tuned to
match the use of full model ADMIRE, which usually requires
higher degrees of freedom, as demonstrated in Fig. 7(c).
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Fig. 8. Top figures report the total number of predictors and the number of
predictors used (i.e., the number of nonzero coefficients) per depth while
implementing ADMIRE using full and reduced models to (a) simulated
phantom and (b) in vivo liver scan data. The corresponding computational
order in model decomposition is also demonstrated.

D. Reduced Model Dimension and Computational Cost
Reduction

We identified the total number of predictors and the num-
ber of predictors used while implementing ADMIRE using
full and reduced models. Fig. 8 indicates the significant

TABLE V

TISSUE-MIMICKING PHANTOM IMAGE QUALITY METRICS
AND SPECKLE STATISTICS (SIX REALIZATIONS)

Fig. 9. 2-D PSFs simulated using DAS and full model ADMIRE with differ-
ent levels of STFT window overlap ratio are shown in (a). The corresponding
axial beam profiles in (b) are used to quantify the axial spatial resolution, also
indicated in (b). The dynamic range of 2-D PSF images is 80 dB.

dimensionality reduction in the reduced models from simu-
lated phantom and in vivo liver data, indicating that compu-
tational complexity is reduced by three orders of magnitude
compared to the computational cost of applying a full-sized
model.

E. Impact on Image Quality With Different Levels of STFT
Window Overlap

Fig. 9 shows the set of 2-D point spread functions (PSFs)
derived from DAS and ADMIRE, using different levels of
STFT window overlap, together with the corresponding axial
beam profiles. We also quantified the spatial resolution axially,
as indicated at top right in Fig. 9(b). It is worth noting that
ADMIRE using a 50% STFT window overlap provides axial
resolution as high as that derived from DAS. However, the off-
peak lobes persist at a much higher level when compared to
the case of ADMIRE using a 90% window overlap.
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Fig. 10. Simulated anechoic cyst images formed after DAS and ADMIRE
using four different models with different levels of STFT window overlap,
ranging from 0.05 (5%) to 0.95 (95%) are demonstrated in (a). The images
are reconstructed after adding reverberation clutter at SCR 0 dB. The dynamic
range is 60 dB. (b) Matched CNR as a function of an STFT window overlap
ratio.

Apart from a point target simulation to demonstrate reso-
lution impact, we used simulated cyst phantoms with rever-
beration clutter at SCR 0 dB to examine how ADMIRE
image quality may be correlated with the ratio of STFT
window overlap. Fig. 10(a) demonstrates the qualitative results
obtained from DAS and ADMIRE, using four different models
with different levels of STFT window overlap, ranging from
0.05 to 0.95, while the matched CNR values are reported using
line plots with error bars in Fig. 10(b). The results demonstrate
that ADMIRE images reconstructed using STFT window over-
lap lower than 50% may be degraded to some extent, but the

Fig. 11. Matched total single-core serial run time to reconstruct ADMIRE
B-mode images shown in Fig. 7(a). The run times were measured and
plotted as a function of λ that controls the degrees of freedom used when
implementing ADMIRE.

Fig. 12. Matched total single-core serial run time to form the ADMIRE
images demonstrated in Fig. 10. The run times are a function of STFT window
overlap ratio.

qualitative degradation is not noticeable. Using the measured
CNR values demonstrated in Fig. 10(b), we conducted a Mann
Whitney test (i.e., a Wilcoxon rank sum test) for p < 0.05,
showing the differences were not significant for any cases
when compared between 5% and 90% STFT window overlap.
This result further supports reducing the overlap ratio of 90%
used for the original ADMIRE implementation.

F. Timing Assessment
Table VI summarizes the results of measuring total single-

core serial run-times from the matched data in Fig. 8. It is
not surprising that an ICA-FOBI model requires a slightly
longer run-time than the other two reduced models because of
the greater number of nonzero coefficients. However, because
ADMIRE using an ICA-FOBI model can reduce the run-time
and preserve a similar performance to ADMIRE using a full
model, the usefulness and benefits of an ICA-FOBI reduced
model are substantial.

Fig. 11 shows the timing results using various λ values when
applied to in vivo liver data, indicating that smaller values of
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TABLE VI

TOTAL SINGLE-CORE SERIAL RUN TIME (SEC)

Fig. 13. Five ICA algorithms comparison using tissue-mimicking phantom images formed after using a full model and an ICA-based reduced model, along
with the ADMIRE resulting image using (a) a full model. (b)–(f) images are post-ADMIRE images using an ICA-based reduced model with five different
ICA algorithms, including (b) FOBI, (c) robustICA, (d) EBM, (e) SOBI, and (f) AMUSE. The dynamic range is 60 dB.

λ (i.e., higher degrees of freedom) require a longer run time
when implementing ADMIRE, compared to cases of using
higher λ values (i.e., lower degrees of freedom). As expected,
ADMIRE may have a higher computational cost when imple-
mented in higher clutter environments using higher degrees of
freedom.

We also measured the corresponding total single-core run-
time as a function of STFT window overlap in Fig. 12. It is
important to note that the use of a 50% STFT window overlap
can accelerate ADMIRE’s serial run time by more than one
order of magnitude, when compared to the use of a 90% STFT
window overlap, despite no substantial difference between
images, as shown in Fig. 10.

G. Comparison of Models Reduced Using
Different ICA Algorithms

Fig. 13 demonstrates the qualitative comparison results,
including tissue-mimicking phantom B-mode images resulting
from ADMIRE using: 1) a full model, a set of ICA-based
reduced models using an algorithm called; 2) FOBI; 3) robus-
tICA; 4) EBM; 5) SOBI; and 6) AMUSE. We then quantified
the matched contrast, CNR, and SSNR to identify which ICA
algorithm is superior in terms of producing a high-quality
ADMIRE image. Table VII reports the quantitative results.

TABLE VII

QUANTITATIVE RESULTS USING DIFFERENT ICA ALGORITHMS

Note that the ICA-FOBI and robust ICA algorithms show
better performance than the others. The EBM and SOBI
methods boost perceived contrast but decrease CNR and SSNR
with degraded speckle texture. These methods may produce
the limitations we found in ADMIRE using a GSO-based and
an SVD-based reduced model.

IV. DISCUSSION AND CONCLUSION

We conducted a comprehensive analysis of the dimen-
sionality reduced model methods to identify the usefulness
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Fig. 14. Set of simulated cyst B-mode and the matched reconstructed channel
data images using the four different ADMIRE models (full, GSO, SVD, and
ICA-FOBI), along with DAS.

when implementing ADMIRE. A model reduced using an
ICA-FOBI method is the most efficient way to accelerate
ADMIRE implementation while preserving ADMIRE perfor-
mance. The simulation, experimental phantom, and in vivo
results demonstrated in Figs. 4, 6, and 7 indicate that an
ICA-FOBI model may enable ADMIRE to perform as well
as in the case of using a full model. The model predictors
are nonstationary sinusoids that have substantial higher order
correlations. We aim to minimize the correlations using the
dimensionality reduction methods. The ICA method removes
higher order correlations with a set of transformed model
predictors with statistically independent vectors, while two
other reduction methods (i.e., GSO and SVD) use orthonormal
column vectors that are linearly independent and remove up
to the second-order dependencies [34]. Fig. 14 shows a set of
simulated cyst B-mode and the matched reconstructed channel
data images using the four different ADMIRE models (full,
GSO, SVD, and ICA-FOBI), along with DAS. Also, note that
the number of predictors of the ICA-FOBI model is reduced
by apparently three orders of magnitude.

It is also worth noting that reducing STFT window overlap
(default setting in ADMIRE implementation is 90%) may
remarkably increase algorithmic efficiency and decrease com-
putational complexity. Based on the findings demonstrated
in Figs. 10 and 12, a 50% STFT window overlap does not
result in any significant loss of image quality while speeding
up ADMIRE implementation by over one order of magnitude.
A combination of using a reduced model method with dif-
ferent levels of STFT window overlap makes ADMIRE more
computationally efficient.

The goal of this study was to reduce the ADMIRE
algorithm’s computational complexity without sacrificing the
performance. However, more work needs to be done to
further accelerate ADMIRE toward a real-time implementa-
tion. Given the state-of-the-art machine learning techniques,
model decomposition (i.e., model-fit) using elastic-net regu-
larization could be improved by replacing it with a support
vector machine (SVM) with graphics processing unit (GPU)
support [62]. Recently, the deep neural networks (DNNs)
have been applied for ultrasound beamforming [36]. These
findings from recent studies in machine learning suggest the
robustness of neural networks and deep learning algorithms
which could imitate the ADMIRE algorithm, enabling the

direct computation of post-ADMIRE decluttered signals from
the input of cluttered channel data. It may also be possi-
ble to create an end-to-end deep network where cluttered
channel data in the time domain are converted to ADMIRE
decluttered channel data at the output. New architectures such
as U-Net [63], generative adversarial networks (GANs) [64],
or cyclical GANs [65] may be useful for this approach.
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