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Abstract—Ultrasonic displacement estimates have numer-
ous clinical uses, including blood flow estimation, elastography, 
therapeutic guidance, and acoustic radiation force imaging 
(ARFI). These clinical tasks could be improved with better 
ultrasonic displacement estimates. Traditional ultrasonic dis-
placement estimates are limited by the Cramer–Rao lower 
bound (CRLB). The CRLB can be surpassed using biased esti-
mates. In this paper, a framework for biased estimation using 
Bayes’ theorem is described.

The Bayesian displacement estimation method is tested 
against simulations of several common types of motion: bulk, 
step, compression, and acoustic-radiation-force-induced mo-
tion. Bayesian estimation is also applied to in vivo ARFI of 
cardiac ablation lesions. The Bayesian estimators are compared 
with the unbiased estimator, normalized cross-correlation.

As an example, the peak displacement of the simulated 
acoustic radiation force response is reported because this po-
sition results in the noisiest estimates. Estimates were made 
with a 1.5-λ kernel and 20 dB SNR on 100 data realizations. 
Estimates using normalized cross-correlation and the Bayes’ 
estimator had mean-square errors of 17 and 7.6 µm2, respec-
tively, and contextualized by the true displacement magni-
tude, 10.9 µm. Biases for normalized cross-correlation and the 
Bayes’ estimator are −0.12 and −0.28 µm, respectively. In vivo 
results show qualitative improvements. The results show that 
with small amounts of additional information, significantly im-
proved performance can be realized.

I. Introduction

With a goal of creating displacements estimators that 
bypass fundamental limits on common estimators, 

such as normalized cross-correlation, a perturbation to the 
traditional likelihood function was proposed in the accom-
panying paper and shown to be more discriminative in the 
sense of appropriately concentrating probability distribu-
tions around the true displacement [1]. In addition to pre-
senting a modified likelihood function, biased estimators 
were introduced in a qualitative manner. In this paper, 
biased estimators are implemented and it is shown that 
it is possible to surpass the performance limit described 
by the cramer–rao lower bound (crlB) with relatively 
small amounts of additional information.

The crlB is a general measure of information content 
that describes the minimum obtainable estimation error 
variance when using an unbiased estimator [2]. a crlB 

for displacement estimation related tasks has been derived 
in the ultrasound literature [3]–[7], but the derivation by 
Walker and Trahey [6] seems to be favored (probably be-
cause of its broad applicability):
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where f0 is the pulse center frequency, B is the pulse band-
width, T is the kernel size, ρ is the normalized correlation 
between signals, and snr is the signal-to-noise ratio.

The crlB-limited estimator—usually referred to as 
the minimum-variance unbiased estimator (MVUE)—is 
unique because the algorithmically induced bias is zero, 
which can be useful. The utility of its unbiased nature is 
seen in situations in which many independent measure-
ments can be acquired. In this case, the mean of the es-
timates will converge toward the true measurement. In 
most clinical scenarios, however, it is not possible to ob-
tain multiple measurements. In in vivo scenarios in which 
only a single estimate can be acquired, the bias error is 
often over-emphasized as a noise mechanism because for 
a single estimate it is not possible to distinguish between 
different orthogonal error components [8]. By considering 
both noise mechanisms—bias and variance—a better esti-
mator can often be realized.

The bias and variance of an estimator’s error are de-
fined as

 bias E= −[ˆ ]τ τ0 0  (2)

 variance E bias= − −[(ˆ ) ] ,τ τ0 0
2 2  (3)

where τ0 describes the true estimate and τ̂0 describes the 
estimated time shift (i.e., displacement) between two sig-
nals. Both noise mechanisms can be appropriately com-
bined in the form of the mean square error (MsE):

 MSE E variance bias= − = +[(ˆ ) ] .τ τ0 0
2 2  (4)

In many cases, allowing a small amount of bias into an 
estimator can lead to a drastic reduction in the estimation 
variance, creating an overall lower MsE. Fig. 1 shows an 
example of two different hypothetical biased estimators 
and how they might compare with an unbiased estimator 
that is crlB-limited.

In the ultrasound literature, there have been no de-
scriptions of biased displacement estimators that produce 
estimates with a lower MsE than would be produced by a 
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MVUE. several groups have produced estimator schemes 
in which the displacement search region is shifted and 
reduced in size based on displacements measured at adja-
cent positions [9]–[11], but because of the way these algo-
rithms are implemented, they only achieve improvements 
in computational efficiency and in reduction of peak-hop-
ping artifacts, rather than an improvement in the actual 
MsE. (This type of approach will be shown to be a spe-
cific realization of the methods developed herein.)

In the rest of this paper, biased displacement estimates 
with MsE surpassing the limit expressed by the crlB 
will be demonstrated for several different types of motion.

II. Methods

A. Overview

It is difficult to create estimators with improved MsE 
characteristics relative to the MVUE using classical meth-
ods [2]. The usual alternative is to use Bayes’ theorem, 
which is a simple equation describing the appropriate 
method for combining the current data with previous 
knowledge about the parameter(s) to be estimated [8]. 
Bayes’ theorem will be used for ultrasound displacement 
estimation to appropriately combine information from a 
local similarity function and prior information about the 
displacement to provide a better estimate for the current 
displacement estimate. To this end, Bayes’ theorem is ex-
pressed as
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where x is the data, τ0 is the displacement, and m indexes 
axial depth. The term pm(x | τ0) denotes the likelihood 
function, pm(τ0) is the prior probability density function 
(PdF), and pm(τ0 | x) is the posterior PdF. The likelihood 
function is the means by which data are incorporated into 
the estimate. an appropriate and implementable likeli-

hood function has been demonstrated in the companion 
paper [1]:
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where sm1 and sm2 are the rF a-lines from which motion 
will be estimated, α is an application-specific scaling term, 
∆ is the sampling period, and M is the length of the data 
record (i.e., kernel length). The quality metric for this 
function is normalized cross-correlation and the snr is 
calculated as

 SNR ρ
ρ
ρ=

−1 . (7)

The prior distribution expresses previous knowledge of the 
displacement and is a PdF. Example uses of prior PdFs 
would be to use the knowledge of an arF dynamic re-
sponse through depth to allow adjacent spatial locations 
to appropriately influence the current estimate, or simi-
larly, in the case of blood-flow estimation, one could use 
fluid dynamics to influence adjacent spatial locations [12]. 
The posterior distribution is also a PdF and represents 
the final state of knowledge of the parameter(s) to be 
estimated after combining the new and old information. 
displacement estimates at a given depth position will be 
made from the posterior distribution.

Two simple methods for obtaining prior PdFs of the 
displacement estimate will be described. accompanying 
the description of prior PdFs will be a description of ap-
propriate estimators for resolving the final posterior dis-
tribution into estimates of displacements. a flowchart de-
scribing the entire algorithm is shown in Fig. 2.

B. Prior Probabilities

computing prior probabilities for ultrasound displace-
ments is an open-ended, flexible problem with many solu-
tions. Two solutions for computing prior probabilities will 
be developed in this section. The intention of the proposed 
methods will not be to present a broadly generalizable 
optimal prior PdF but rather to demonstrate the promise 
of biased estimators and the small amount of additional 
information needed to surpass the crlB. The simplest, 
least-informative prior for ultrasound displacement esti-
mation is a uniform PdF with an extent equivalent to the 
search region. This prior is
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where τα and τβ denote the limits of the search region. 
The mean and variance of the uniform prior can be static 
for all displacement estimates in the field, or the uniform 
PdFs can be dynamic based on other information, such as 

Fig. 1. Three distributions describing the error of different hypothetical 
estimators are shown. The broad distribution can be equated to a min-
imum-variance unbiased estimator (MVUE), which would be described 
by the cramer–rao lower bound. The other two estimators have a signif-
icantly smaller variance. The estimator with the small bias to the right 
of θtrue is attractive, whereas the other biased estimator is clearly not.
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spatially adjacent displacements [9]–[11]. For the evalua-
tion here, the uniform PdF is static with depth.

The second prior scheme that will be explored is more 
dynamic than the uniform PdF proposed in (8). In this 
scheme, the posterior distribution at the previous depth 
will be considered a good estimate for the prior distribu-
tion at the current depth. When the previous posterior 
gets too narrow based on the posterior’s standard devia-
tion, the prior will revert to a normal distribution with 
mean equal to the previous estimate and a standard de-
viation equal to a defined minimum standard deviation. 
That is,
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where τ̂0 1m−  is the estimate at the previous depth and the 
variance is a predefined σmin.

In a special case in which deterministic and stochastic 
implementations are compared, the prior will always be 
a normal distribution based on the mean and standard 
deviation of the posterior distribution. In this case, the 
standard deviation will be
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where σmin is a defined minimum standard deviation. This 
is done because normal distributions are easy and efficient 
for taking random samples compared with arbitrary PdFs 
that may be encountered in more general methods. ad-
ditionally, normal distributions are useful because they 
represent the least informative prior when only the mean 
and standard deviation are known. This special case and 
the accompanying results are shown in the appendix.

C. Parameter Estimation From Posterior Distributions

Using the likelihood function shown in (6) and one of 
the approaches for computing a prior PdF just described, 
it becomes simple to use Bayes’ theorem, shown in (5), to 
calculate a posterior PdF, which can be converted into 
a displacement estimate. Many methods exist to resolve 
posterior distributions into displacement estimates [2]. 
The two methods evaluated here are the minimum mean 
square estimator (MMsE) and the maximum a posteriori 
estimator (MaPE). The MMsE is

 ˆ ( | ) ( | ) .τ τ τ τ τ0 0 0 0 0= = ∫E x p x d  (11)

The MMsE is the average of the posterior distribution, 
and as suggested by the name, it minimizes the MsE of 
the estimate for ˆ .τ0  This indicates a significant conceptual 
departure from the MVUE (limited by the crlB), par-
ticularly because the possible improvements are available 
even when used with a noninformative prior.

(It is worth stating that the MMsE is not necessarily 
better than the MVUE even when it yields what would 
be considered better estimates. This is because the op-
timization problem that would lead one to the MMsE is 
different from the problem that leads to the MVUE. a 
thorough discussion on the nature of the various estima-
tors has been presented by Kay [2].) The MaPE is

 ˆ arg max ( | ).τ τ
τ

0 0
0

= p x  (12)

The MaPE resembles the methods for parameter estima-
tion when using normalized cross-correlation, and because 
the conversion of the normalized cross-correlation function 
to a likelihood function [see (6)] is a monotonic trans-
formation normalized cross-correlation and MaPE yield 
identical estimates for the case of a uniform prior [see (8)] 
on τ0 [1].

In the event that the posterior distribution is normal-
ly distributed (or, more generally, in the case where the 
posterior distribution is symmetric about the peak) the 
MMsE and the MaPE will yield identical results.

normalized cross-correlation sometimes referred to as 
the maximum likelihood estimator (MlE) will be the pri-
mary point of comparison for the estimators introduced.

Fig. 2. a flowchart for the deterministic implementation of biased esti-
mation described in the methods.
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D. Simulations

To test the new displacement estimators, four types of 
simulations were performed. simulations were performed 
to test the estimators on bulk displacements, step displace-
ments, compression-induced displacements (strain), and 
acoustic radiation force (arF)-induced displacements.

The first three sets of simulations (bulk, step, and com-
pressional displacements) are entirely 1-d. The 1-d data 
were simulated using an axial convolution method. The 
convolution was performed between a complex Gaussian 
pulse and a randomly distributed scatterer field. For each 
scatterer in the field, the pulse was given a bulk offset in 
pixels and a subsample phase rotation based on the dif-
ference between the nearest pixel location and its actual 
location. This approach to the typical convolution data 
simulation method allowed continuous displacements to 
be simulated. The final simulation result for each scatterer 
field was a single a-line of rF data obtained by taking the 
real part of the complex convolution.

For the purposes of the simulation, 35 scatterers were 
used per resolution cell. Thirty-five scatterers per resolu-
tion cell is excessive—12 to 15 scatterers are adequate 
to achieve second-order speckle statistics [13]; the large 
number of scatterers was chosen to ensure sufficient scat-
terer density regardless of the simulated displacement, in-
cluding displacement fields induced by large step displace-
ments or strains.

For all of the simulations—including the arF simula-
tions not yet described—thermal noise was modeled as an 
additive random process that was band-limited based on 
the simulated pulse’s characteristics. all of the simulations 
used the parameters shown in Table I unless specified oth-
erwise. specifically notable is the sampling frequency. a 
sampling frequency of 10 GHz was deemed sufficient to 
avoid using subsample estimation for the MaPE or MlE 
and to obtain an adequate error distribution for almost all 
cases. (Using a subsample estimator is undesirable in this 
case because it adds an additional source of bias.) The 
sampling frequency was also sufficient to allow numerical 
integration for the MMsE—with and without a dynamic 
prior—to be implemented as a simple summation.

all four estimators (the MlE, the MMsE with a non-
informative prior, the MaPE with a dynamic prior, and 
the MMsE with a dynamic prior) will be evaluated on 
each type of simulated motion.

For the bulk displacement simulations, the effect of fre-
quency, bandwidth, kernel length, and snr were evalu-
ated. These factors all influence the crlB shown in (1). 
The only other factor influencing the crlB is signal cor-
relation. signal correlation effects can be mechanism-de-
pendent, so several mechanisms of inducing decorrelation 
will be evaluated in the simulations for step, compres-
sional, and arF displacements. For the bulk displacement 
simulations, 1000 realizations of scatterer and noise re-
alizations were evaluated. additionally, the displacement 
for each realization was drawn from a normal distribution 
with zero-mean and a standard deviation of λ/20. This 

avoided any biases that could be caused by a regular pat-
tern of subsample displacements and was computationally 
efficient because the necessary search region was small.

For the step displacement simulations, a step displace-
ment of 20% of the center frequency’s wavelength was 
created at 2 cm of axial depth. The effect of a minimum 
standard deviation for the normal prior distribution was 
evaluated. The step displacement simulation results for 
biased estimators were also used to calculate frequency 
responses. Frequency responses can be obtained by dif-
ferentiating the step displacement and calculating the 
Fourier transform of the result. The frequency response 
will also include the frequency response of a 47th-order 
low-pass filter. This particular filter was the shortest pas-
sive filter designed using the windowed linear-phase finite 
impulse response (FIr) method [14] [as implemented in 
Matlab (The MathWorks Inc., natick, Ma)] that has a 
lower MsE for an arF-induced displacement compared 
with any of the biased estimators. Minimum prior stan-
dard deviations for the dynamic prior between 0.1 ns and 
100 ns were evaluated. For the step displacement simula-
tions, 100 realizations of data were evaluated.

The arF results from displacement estimation using 
biased estimators are also compared with filtering the 
arF displacements estimated using normalized cross-cor-
relation combined with low-pass filters. The filters were 
designed using the windowed linear-phase FIr method 
[14] (as implemented in Matlab).

strain displacements were simulated mathematical-
ly by compressing the location of the scatterers in the 
simulated field. simulations were performed for compres-
sions between 0.01% and 10%. For the strain simulations, 
snrs between 10 and ∞ dB and adjacent kernel overlap 
between 0% and 99% were evaluated. simulations were 
also performed for minimum prior standard deviations 
between 0.1 ns and 1 µs. strain was estimated from the 

TaBlE I. simulation Parameters. 

Parameter Value

center frequency 5 MHz
Bandwidth 50%
sampling frequency 10 GHz
Kernel length 3λ
Kernel overlap 80%
strain-specific parameter
 strain 1%
arF-specific parameters
 Tracking center frequency 7 MHz
 Tracking f-number 0.5
 radiation force center frequency 2.22 MHz
 radiation force duration 180 µs
 radiation force f-number 2
 sampling frequency 100 MHz
 Focus depth 2 cm
 Tracking pulse repetition frequency 10 kHz
 young’s modulus 8.5 kPa
 Kernel length 1.5λ
 ρ 1.0 g/cm3

 ν 0.499
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compression-induced displacements using only the deriva-
tive without any averaging or median filtering.

For the strain comparisons, some of the plots will be 
displayed as strain filters conceptualized by Varghese and 
ophir [15]. The strain filter plots the snr of the strain 
estimates as a function of strain. The results here will 
calculate the strain snr as

 SNR
MSEstrain
true=
s

. (13)

one-hundred realizations of scatterer distribution and 
noise for each level of strain were evaluated.

arF simulations were also performed to evaluate esti-
mator performance within the context of a more sophis-
ticated modeling framework. arF simulations were per-
formed using the methods laid out by Palmeri et al. [16], 
[17], which couple finite-element simulation of the motion 
induced by arF and clinically relevant beamforming im-
plemented using Field II [18], [19]. For the arF simu-
lations, comparisons were made against snrs between 
10 and ∞ dB for minimum standard deviations between 
0.1 ns and 1 µs for the normal prior distribution, and for 
changes in tracking kernel overlap between 0 and 99%. Be-
cause arF-induced displacement estimates systematically 
underestimate the tissue displacement by as much as 50% 
(and even in the best case underestimate by about 10%) 
[17], the displacement values used to calculate error met-
rics are the mean displacement values of all realizations 
tracked with normalized cross-correlation. When analyz-
ing a specific realization, the mean profile comprised all 
realizations except the one in question.

E. In Vivo Example

To demonstrate basic in vivo feasibility, normalized 
cross-correlation and MaPE are compared for a cryo-
ablation lesion visualized with arFI. The results were 
acquired using an open-chested canine preparation. The 
cryoablation was formed on the epicardial surface of the 
heart using a Brymill cry-ac Tracker with a 3-mm Mini 
Probe (Brymill cryogenic systems, Ellington, cT). The 
data were acquired using a sonoline antares ultrasound 
system and VF10–5 linear array transducer (siemens 
Healthcare, Ultrasound Business Unit, Mountain View, 
ca). The data were acquired at baseband at 8.9 MHz. The 
baseband data were interpolated to 142 MHz and recon-
structed to radio-frequency data. For each arF-induced 
displacement, 4 adjacent a-lines were acquired in parallel. 
The center frequency for the data used to estimate the dy-
namic response is 8 MHz. The pulse repetition frequency 
for measuring each dynamic response is 8.9 kHz. The α for 
(6) is 4, the minimum standard deviation for the prior was 
5 ns, and the kernel length was 1.5 λ. For both implemen-
tations of the displacement estimation—normalized cross-
correlation and MaPE—parabolic subsample estimation 
was used.

III. results

A. Bulk Motion Displacement Simulations

results of the bulk displacement simulations are shown 
for parameters (excluding signal correlation) impacting 
the cramer–rao lower bound. The bias and variance are 
plotted as bias2  and σ 2, respectively, to demonstrate 
the result in micrometers, which is often more concise, 
whereas the MsE is always displayed in units of squared 
micrometers. results are shown for all 4 estimators for 
frequency and bandwidth as a function of the parameter 
in Fig. 3. results for varying snr and kernel length are 
shown as a function of depth for the MaPE and normal-
ized cross-correlation (i.e., the MlE) in Figs. 4 and 5.

In Fig. 3, where the frequency and bandwidth affects 
on bulk motion estimation are shown, it is clear that the 
MsE for biased estimation is less than that for unbiased 
estimation. In addition, there are several other key trends. 
The first trend is that normalized cross-correlation and 
the MMsE with a non-informative prior perform almost 
identically for bulk motion. The same can be said for the 
MaPE and MMsE when implemented with the dynamic 
prior for bulk motion. The second trend is that the func-
tional behavior of the frequency and the bandwidth for 
the biased estimators is very similar to the behavior of 
the unbiased estimator. The third trend, which is very sig-
nificant, is that for bulk motion, the biased estimator has 
lower bias than the algorithmically unbiased normalized 
cross-correlation. additionally, the bias always represents 
a significantly smaller portion of the MsE than the vari-
ance for all estimators.

The effect of snr on bulk motion estimates is shown in 
Fig. 4 as a function of depth to show how improvements 
evolve. The results are only shown for normalized cross-
correlation and the MaPE because the other estimators 
were shown to perform almost identically. The results 
generally follow the trends seen for frequency and band-
width. These results add additional perspective and show 
that the region of most rapid improvement— compared 
with the MlE—is within the first 0.5 cm of axial depth 
with modest improvements past about 1 cm axially. This 
demonstrates that only small amounts of additional in-
formation are required to achieve results that surpass the 
crlB. Finally, the snr results show an artifact for the 
MaPE when the snr is ∞ dB.1 The no-noise scenario 
for the bulk motion simulations should be considered a 
degenerate case because all of the probability is concen-
trated to a single sample. The sample that the probability 
concentrates to is not the exact solution, but because the 
probability is a δ-function, the estimator assumes this an-
swer is exact, resulting in an inconsistent framework. This 
artifact is not seen in any of the other results and is not 
expected in in vivo scenarios because of the ubiquity of 
thermal noise and signal decorrelation.

1 The MMsE with either prior scheme shows the same artifact.
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Fig. 3. Frequency and bandwidth functional responses for bulk motion. The effect of bandwidth and frequency are shown for all 4 estimators. The 
estimators with a depth-dependent, dynamic, Gaussian prior are shown for two depths, 1.5 cm and 4.5 cm. The mean and standard deviation dis-
played are calculated over a 0.5-cm window in both directions. The maximum likelihood estimator (MlE) and minimum mean square estimator 
(MMsE) with a non-informative prior are shown based on their statistics centered around 1.5 cm. The functional forms for frequency and bandwidth 
are very similar to the functional form seen for the MlE (i.e., normalized cross-correlation). consistent with other results, the bias is lower for the 
biased estimator.

Fig. 4. snr comparisons for bulk motion. This figure compares the maximum likelihood estimator (MlE) (normalized cross-correlation) to the 
maximum a posteriori estimator (MaPE) with the dynamic Gaussian prior distribution as a function of depth for several levels of snr. For both 
cases, the mean-square error is dominated by variance. The bias is very similar between the two estimators, but the biased estimator actually has 
a lower bias for bulk motion when comparing a given level of snr. The no-noise case for the MaPE (i.e., ∞ dB) should be seen as a degenerate 
case because the sampling frequency is not adequate for this level of probability concentration. This failure is not seen when any amount of signal 
decorrelation is present.
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The most interesting bulk motion results are for the 
kernel length. Kernel length results are shown as a func-
tion of depth for the MlE and MaPE in Fig. 5. The 
results show that for the MaPE, the kernel length has 
almost no effect on the MsE, particularly when compared 
with the behavior of normalized cross-correlation. In ad-
dition, the results for the MaPE show that the smallest 
kernel length evaluated (1.5 λ) has the smallest bias. The 
results for kernel length are unexpected but intriguing. 
It is hypothesized that by passing information from one 
estimate to the next, the amount of information contained 
in the displacement estimate from 8 consecutive 1.5-λ ker-
nels is equivalent to the information from estimating the 
displacement from a single 12-λ kernel.

B. Step Displacement Results

results for the step displacement simulations are shown 
in Fig. 6. The figure shows the MsE of the MaPE in re-
sponse to a step displacement. The results are shown for a 
selection of prior PdF minimum standard deviation. The 
broadest standard deviation shown is basically normal-
ized cross-correlation because the prior imposes so little 
effect on the MsE. additionally, one of the useful aspects 
of simulating a step displacement profile is the ability to 
construct the frequency response. Frequency responses for 
a selection of minimum prior standard deviations are also 
shown in Fig. 6. Included in the figure is the frequency 
response of a 47th-order low-pass filter because this was 
found to be the shortest filter that produced a lower MsE 
than any biased estimator for arF-induced displacements.

C. Compression-Induced Displacement Results

results for compression-induced motion estimates and 
the resulting strain estimates are now shown. The results 
show the effect of assigning an appropriate minimum stan-
dard deviation to the prior PdF, the effect of snr, and 
the effect of kernel overlap.

The first results show the effect of minimum standard 
deviations of the prior PdF on compressional motion es-
timates. These results are shown in Fig. 7. The results 
show that there is a relatively narrow range of minimum 
standard deviations that produce better results than nor-
malized cross-correlation. However, for a large range of 
standard deviations, the estimates are no worse than nor-
malized cross-correlation.2 similar results are shown for 
the actual estimation of strain in the form of a strain 
filter in Fig. 8. results are shown for a range of minimum 
standard deviations for the MaPE and for one minimum 
standard deviation case for all 4 estimators. one inter-
esting result is that small strains in the range of 0.01 to 
0.1%—normally difficult to measure—can be estimated 
effectively. This is probably at least in part because the 
prior scheme assumes bulk motion, which is also prob-
ably why the improvement in the more traditional clinical 
strain region is more modest.

Fig. 5. Kernel size comparisons for bulk motion. This figure compares the maximum likelihood estimator (MlE) (normalized cross-correlation) to 
the maximum a posteriori estimator (MaPE) with the dynamic Gaussian prior distribution as a function of depth for several common kernel lengths. 
For both cases, the mean-square error is dominated by variance. The biased estimator actually has a lower bias for bulk motion when comparing a 
given level of snr. For the MaPE the shortest kernel length evaluated produces the lowest bias.

2 Even when MsE improvements over normalized cross-correlation are 
not realized, the prior can still act as a peak-hopping filter. Peak-hopping 
can be reduced by the prior (as compared to the non-informative prior) 
by slightly attenuating correlation peaks away from the prior’s mean.
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The effect of snr on estimating compressional motion 
and strain are shown in Fig. 9. The results show that the 
MsE is lowest when there is 20 dB of snr. There is a 
small decline in performance when the snr gets better 
and a larger decline in performance when the snr gets 
smaller. It is not known why this is the case, but it is hy-
pothesized that 20 dB is the right amount of snr to keep 
the posterior (and by extension subsequent prior) distri-
butions sufficiently broad to more adequately handle the 
gradually increasing displacement encountered in these 
simulations. The results for actual strain estimates do 
not show estimation improvement at 20 dB but do show 
that at snrs 20 dB and higher, snr has little impact on 
the strain MsE. This trend is not significantly different 
than the results derived from normalized cross-correlation 
based estimates.

The effect of kernel separation on displacement estima-
tion is displayed in Fig. 10. The results show the best lag 
between kernels for the purpose of displacement estima-
tion is 80% of the kernel’s length. However, these results 
may be slightly misleading because the minimum prior 
standard deviation used for these estimates was optimized 

for 80% kernel overlap. It may be possible to find a better 
combination of kernel overlap and minimum prior stan-
dard deviation. The result of estimating the strain with 
various levels of kernel overlap is also shown in Fig. 10. 
These figures show, for the biased estimators, that the 
amount of kernel overlap matters less when estimating 
strain. For these results, the MlE-derived displacements 
can actually lead to better estimates of strain. This seems 
to be true for kernel overlap that is about 50% or less. 
This occurs because the difference between the two es-
timates is higher and the noise on the estimates has less 
impact. The general method employed in the literature is 
to calculate strains with kernel overlap of 75% to 80% and 
then filter the results (or fit to a model), which mitigates 
the improvement of having no kernel overlap.

D. ARF-Induced Displacement Results

arF-induced motion estimates are shown next. The 
results will show the effect of assigning an appropriate 

Fig. 6. step displacement results. (a) The results of the maximum a pos-
teriori estimator (MaPE) for a step displacement at 2 cm are shown for 
several different minimum standard deviations for the normal prior. (b) 
The result of using the step response to calculate the frequency response. 
This figure also shows the frequency response of the shortest filter that 
outperforms the biased estimator in a mean-square error sense.

Fig. 7. Minimum prior standard deviation’s effect on compressional mo-
tion estimates. The effect of minimum standard deviation on the mean-
square error (MsE) is shown for all 4 estimators. results are displayed 
for two ranges of depth: (a) 0 to 1 cm and (b) 2 to 3 cm axially. The 
standard deviation is shown (untransformed) and is displayed only on 
the upper side when µ − σ would be less than zero (because the data are 
displayed on a log scale). all 4 estimators are shown. There is a range of 
minimum standard deviations where the maximum a posteriori estima-
tor (MaPE) and minimum mean square estimator (MMsE) outperform 
normalized cross-correlation for 1% strain.
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minimum standard deviation for the prior PdF and the 
effect of kernel overlap.

First, the results showing the impact of the minimum 
standard deviation of the prior are shown in Fig. 11. The 
figure shows three different positions along the axis of the 
arF dynamic response. The figure demonstrates the ab-
solute performance of each estimator as well as each es-
timator’s relative performance to the others over a range 
of selections for σmin. The estimators that use a dynamic 
prior do have the lowest MsE, but they also have the high-
est MsE. This trend indicates the importance of proper 
selection of σmin. additionally, in the region of best perfor-
mance, there is no difference between the estimators using 
a dynamic prior. However, when non-informative priors 
are used, the MMsE has a slightly lower MsE for the es-
timate from the leading edge and peak, but slightly worse 
performance on the trailing edge compared with the MlE.

The results for changes in kernel separation are shown 
in Fig. 12. The figure shows the MsE plotted as a func-
tion of the distance between kernels in percent of kernel 
overlap for the same positions along depth shown in Fig. 
11. one of the initial hypotheses was that more overlap 
would be beneficial to the biased estimators. This figure 

shows a trend that is distinctly in the opposite direction. 
The figure suggests that a kernel overlap of no more than 
20% produces the best results. This is an attractive result 
because it decreases computational overhead.

E. Simulation Results Summary

considering all of the results as a whole, none of the 
estimators’ results had zero bias, including normalized 
cross-correlation. Because normalized cross-correlation is 
algorithmically unbiased, this suggests that there is bias 
in the data used to track the motion of diffuse scatterers. 
The biased estimators often had lower bias than normal-
ized cross-correlation, and when the bias of the biased 
estimator was worse it was still lower than the noise from 
variance. These observations are consistent with the argu-
ments and examples given by Jaynes on biased estima-
tion [8]. (This pattern of improvement excludes minimum 
standard deviations that are grossly inappropriate. as an 
example, a prior standard deviation of 10−11 in the arFI 
results shown in Fig. 12 would result in much worse be-
havior not conforming to the pattern just described.) The 
observation that the variance is still the dominant noise 

Fig. 8. (a) several strain filters are plotted for varying levels of σmin as 
expressed in (9) for the maximum a posteriori estimator (MaPE) and 
the minimum mean square estimator (MMsE). (b) all of the estimators 
are compared (for this figure, the minimum prior standard deviation is 
3.1 ns).

Fig. 9. snr functional response for (a) compresional motion and (b) 
strain estimation. This figure shows compressional motion estimation 
mean-square error (MsE) as a function of snr. The results are shown 
for 4 different estimators [maximum likelihood estimator (MlE), maxi-
mum a posteriori estimator (MaPE), minimum mean square estimator 
(MMsE) non-informative prior, and MMsE].
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source is significant because it signifies that the estimators 
are not over-biased; or in other words, the estimators are 
not being dominated by prior information and are sensi-
tive to the data over a fairly wide range of prior standard 
deviations.

although these observations about the variance are gen-
erally consistent with ultrasonic displacement estimation 
literature, the observations regarding bias are not. Two 
hypotheses for the source of the displacement bias are pos-
ited. First, it is possible that bias comes from subsample 
displacements. This seems unlikely, based on the design of 
the bulk motion simulations, because the displacements 
were drawn from a Gaussian distribution centered about 
zero displacement. If the source of the bias was from the 
randomness of the displacements, it is expected that mea-
sured bias would be several orders of magnitude smaller 
then what was actually measured and would mirror the 
simulations without noise. second, it is possible that the 
bias comes from the noise. This immediately seems to be 
at least plausible, because Fig. 4 shows that the bias is a 

function of the snr. In this case, the noise-induced bias 
is simply the orthogonal component to noise-induced vari-
ance. The higher-than-expected bias may be related to the 
correlation length of the noise, which in turn is related to 
the bandwidth of the signal.

F. In Vivo Results

In vivo arFI results of a canine right ventricle cryo-
ablation are shown in Fig. 13. The figure shows the same 
data with motion estimated using normalized cross-corre-
lation and using Bayesian speckle tracking with MaPE. 
The images show the stiff cryolesion as low displacements 
and the soft, spared tissue as high displacements. The 
image formed using Bayesian speckle tracking shows less 
variability than the image made using normalized cross-
correlation. additionally, there is detail in the MaPE im-
age that is not present (or hard to see) in the normalized 
cross-correlation image. an example of the additional de-
tail that can be visualized using MaPE is the blockiness 
on the right side of the MaPE image outside the lesion. 
This blockiness results from the position of the parallel 
tracking beams and the early time point after the radia-
tion force excitation that is being shown.3 The impact of 
the receive beamforming appears to be present in the im-
age formed using normalized cross-correlation, but is not 
as obvious because of the higher variance of the displace-
ments.

The contrasts of the arFI image made using normal-
ized cross-correlation and MaPE are 0.4370 and 0.3988, 
respectively. The contrast-to-noise ratios (cnrs) for the 
arFI image made with normalized cross-correlation and 
MaPE are 0.2534 and 0.6236, respectively.4 (The cnr 
calculated for the MlE-derived arFI image may seem 
low, based on the visibility of the lesion, but the image 
has been saturated on the high-displacement end. Image 
saturation significantly improves the effective cnr.)

one downside side of Bayesian speckle tracking—as 
implemented here—is that the final result is influenced 
by the starting position of the prior scheme. Worse results 
have been seen when the prior scheme starts outside of 
the tissue, which could occur because it starts above the 
myocardium in the standoff pad, or because it starts be-
low the myocardium inside the chamber. The dependence 
on start position is not seen to be a major limiting factor 
because the important issue seems to be starting at any 
tissue location.

Fig. 10. Kernel overlap functional response for compressional motion and 
strain estimation. This figure shows compressional motion mean-square 
error (MsE) for displacement and strain as a function of kernel overlap. 
results are shown for four different estimators [maximum likelihood es-
timator (MlE), maximum a posteriori estimator (MaPE), minimum 
mean square estimator (MMsE) non-informative prior, and MMsE]. (a) 
The lowest MsE for kernel overlaps typically found in the literature. (b) 
The best performance for the no-kernel-overlap case. This likely stems 
from the strain estimation method used here.

3 at later times, the blockiness goes away as the displacement propa-
gates away from its original lateral location in the form of some trans-
verse wave (e.g., lamb wave, shear wave, etc.).

4 The contrast is defined as 

C background lesion

background
=

−µ µ
µ

. 

The cnr is defined as 

CNR background lesion
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=
−

+

µ µ

σ σ2 2
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IV. discussion

The results presented in this paper are significant not 
because of the specific method used to estimate prior 
probabilities,5 but because with a simple prior scheme, 
the crlB can be surpassed. It is entirely expected that 
within the framework laid out here and in the compan-
ion paper [1], displacement estimation performance will 
continue to improve. This improvement will come from 
increasingly sophisticated methods for computing prior 
information [20], [21].

as an example, one of the first ways to realize improved 
performance is suggested by the results seen from low-
pass filtering the unbiased displacements of arF induced 

motion.6 The arF induced motion estimates that were 
low-pass filtered by a long filter had slightly better MsE 
performance than any of the biased estimates. The low-
pass filter appears to be advantaged (at least in part) 
because it was implemented non-causally (i.e., symmetri-
cally) and, unlike the biased estimators, was not tethered 
by a false causality. Forcing a false causality is a com-
mon theme in advanced displacement estimation methods 
[22]–[24] where only estimates before the current estimate 
are allowed to assist in refining the current estimate. By 
moving away from this unnecessary constraint, estimator 
performance will likely improve.

In addition to developing a framework for Bayesian 
speckle tracking, two new estimators were introduced, the 
MMsE and the MaPE. The usefulness of each estimator 
is situational. For large search regions—such as in static 
elastography imaging—MaPE works well, particularly if 
the prior has a large variance. For smaller search regions 
required for estimating arFI-induced motion, the MMsE 

Fig. 11. acoustic radiation force imaging (arFI) displacement mean-square error (MsE) as a function of minimum prior width: (a) displacement 
profile, (b) leading edge, (c) peak, and (d) trailing edge. These data show the mean square error as a function of the minimum allowable prior 
distribution. The data are shown for the estimates at the positions shown in Fig. 11(a). Four different estimators are compared at each depth. The 
maximum a posteriori estimator (MaPE), the minimum mean square error (MMsE) with a dynamic prior, the MMsE with a non-informative prior, 
and the maximum likelihood estimate (MlE).

6 These results were primarily shown in the figure of frequency re-
sponse, Fig 6. It was observed that a 47th-order low-pass filter could 
produce a better MsE.

5 If someone imitates the method used here for computing dynamic 
priors, they should know that an inherent weakness in the approach 
is that there is not a good mechanism for allowing the prior PdFs to 
become wider if the information at an adjacent location appears to be 
uncorrelated. This is easily observed in the results of the step displace-
ment simulations where small values for σmin result in nearly unrecover-
able performance degradation after the step displacement. This will be 
a function of both the step size and the standard deviation of the prior 
distribution.
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may work slightly better, particularly for environments 
with high thermal noise. The MMsE can also be shown to 
be computationally more efficient if subsample estimators 
are not used in conjunction with the MaPE or MlE.

Finally, biased displacement estimation has only been 
applied to 1-d displacement scenarios. Two- and three-
dimensional realizations of biased displacement estimation 

can easily be accomplished by extending the normalized 
cross-correlation function in (6) to two or three dimen-
sions. (The associated α value would also change based 
on the kernel size.) This has been applied succesfully to in 
vivo cardiac speckle tracking [25].

V. conclusion

Biased estimators were devised using several simple 
prior schemes, the non-informative prior, and a dynamic 
prior PdF. These prior schemes were coupled with two 

Fig. 12. acoustic radiation force imaging (arFI) displacement estima-
tion mean-square error (MsE) displayed as a function of kernel separa-
tion. Estimation mean-square error (MsE) is shown for (a) the leading 
edge, (b) the peak, and (c) the trailing edge of the arFI displacement 
as shown in Fig. 11(a). The results for all 4 estimators are shown in each 
figure.

Fig. 13. an in vivo comparison of unbiased and biased acoustic radia-
tion force imaging (arFI) images of a cryoablation lesion (copper scale) 
embedded in a B-mode image (grayscale). (a) an image of the cryo-
ablation lesion with displacements estimated using normalized cross-
correlation. (b) The same data are used to create the image, but the 
displacements are estimated using the maximum a posteriori estimator 
(MaPE). The contrasts of the normalized cross-correlation and MaPE-
derived displacement images are 0.4370 and 0.3988, respectively. The 
contrast-to-noise ratios (cnrs) of the normalized cross-correlation and 
MaPE-derived images are 0.2534 and 0.6236, respectively. The MaPE 
image on the right shows subtle vertical displacement streaks resulting 
from the parallel tracking sequence in conjunction with the early time 
step after the initial push used to form this image. Because the image 
is created at an early time after excitation, there has not been sufficient 
time for the shear wave to propagate away from the initial excitation 
position and a banding artifact results. This effect is also present in the 
image on the left, but the artifact is masked by the larger variance of the 
unbiased estimator.
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methods of extracting displacement estimates from poste-
rior distributions, the MMsE and the MaPE. Using the 
new biased estimators, it was shown that with relatively 
small amounts of additional information the crlB can 
be surpassed. although the biased estimators obviously 
contained bias for appropriate selection of the prior PdF, 
the dominant noise mechanism was still the variance of 
the error.

appendix: 
stochastic Versus deterministic Implementations

Bayesian estimators are appropriately implemented 
stochastically. For example, the estimators developed here 
should be implemented by drawing random values from 
the prior PdF that describes the a priori knowledge of τ0. 
However, deterministic approximations can in some cases 
be faster, or at least can be more readily implemented in 
existing code. It will be shown that appropriate stochastic 
implementations of the Bayesian estimators and determin-
istic implementations yield statistically indistinguishable 
results. The estimators will be implemented deterministi-
cally by directly multiplying the prior distribution over τ0 

and the likelihood function. To make the sampling simple, 
the prior PdF for both cases will always be a normal dis-
tribution with mean and variance equivalent to the previ-
ous posterior distribution.

Two example results for specific data realizations are 
shown in Fig. 14. The results show how the random sam-
pled implementation converges to a final estimate as more 
samples are drawn. The example shows that the deter-
ministic and stochastic implementations for a given re-
alization of data do not necessarily converge to the same 
result. Fig. 15 shows the results for simulating 1000 data 
realizations and comparing the displacement estimate 
error distribution between the two methods. The figure 
shows the resulting p-value from statistical tests to com-
pare the mean and variance of the error distributions for 
the two methods as a function of depth and of number 
of drawn samples for the stochastic implementation. The 
results show that the error distributions vary only at very 
shallow depths (i.e., broad prior distribution) and a small 
number of draws from the prior distribution. The excep-
tion to this is at deeper depths (i.e., narrow priors) where 
a small portion of the estimates derived from the sto-
chastic implementation yield large errors, which result in 
statistically different distributions.

Fig. 14. This figure shows two example results comparing a deterministic 
implementation [direct multiplication of probability density functions 
(PdFs)] of the proposed estimator and a true Bayesian implementa-
tion (randomly drawing from the prior distribution) for the simple case 
implemented here. (a) a relatively shallow depth (0.4 mm) with a wide 
prior probability on τ0. (b) a still shallow but deeper depth (5 mm), 
which has a more refined prior.

Fig. 15. This figure demonstrates the similarity between the determinis-
tic and probabilistic implementations of the biased estimators: (a) mean 
comparison and (b) variance comparison. The two figures show the ac-
tual p-values calculated as a function of the number of samples from the 
prior and depth. 

http://dx.doi.org/10.1109/TUFFC.2013.2546/mm1


byram et al.: Bayesian speckle tracking. part ii: biased ultrasound displacement estimation 157

although the deterministic and stochastic approach are 
shown to be statistically equivalent for the simple case 
implemented in this paper, this similarity should not auto-
matically be expected to hold for more complex problems.
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