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Histogram Matching for Visual Ultrasound Image
Comparison

Nick Bottenus , Member, IEEE, Brett C. Byram , Member, IEEE, and Dongwoon Hyun , Member, IEEE

Abstract— The widespread development of new ultra-
sound image formation techniques has created a need for
a standardized methodology for comparing the resulting
images. Traditional methods of evaluation use quantitative
metrics to assess the imaging performancein specific tasks,
such as point resolution or lesion detection. Quantitative
evaluation is complicated by unconventional new methods
and nonlinear transformations of the dynamic range of
data and images. Transformation-independent image met-
rics have been proposed for quantifying task performance.
However, clinical ultrasound still relies heavily on visual-
ization and qualitative assessment by expert observers.
We propose the use of histogram matching to better assess
differences across image formation methods. We briefly
demonstrate the technique using a set of sample beamform-
ing methods and discuss the implications of such image
processing. We present variations of histogram matching
and provide code to encourage the application of this
method within the imaging community.

Index Terms— Dynamic range, histograms, image analy-
sis, image quality, ultrasonic imaging.

I. INTRODUCTION

ACONVENTIONAL raw ultrasound image is formed by
a delay-and-sum (DAS) beamforming of array chan-

nel data followed by envelope detection of the radio fre-
quency or complex quadrature signals to visualize the
amplitude-modulated echo signal [1]. The resulting image
values can span several orders of magnitude, so the dynamic
range is compressed using a function, such as a loga-
rithm or fractional exponentiation. Image postprocessing is
often applied to improve the image further, including smooth-
ing background texture, sharpening edges, and enhancing
contrast [2].

Historically, quantitative and visual evaluation of ultrasound
images has been performed at different stages of this image
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formation process. Quantitative metrics are often computed
on the raw images, allowing the beamformer to be analyzed
in isolation from any image postprocessing and providing
certain statistical interpretations about imaging performance.
Similarly, visual evaluation of images often benefits from
dynamic range compression and image postprocessing to
remove artifacts of the image formation process. The vast
majority of ultrasound procedures today are performed by
human operators viewing compressed and processed images.

Modern ultrasound imaging research has produced a diverse
set of imaging techniques that blur the line between the raw
image and the displayed image. The widespread availability of
open and programmable imaging systems [3] and the improved
computational capabilities have led to the proliferation of
alternative image reconstruction algorithms. These algorithms
range from using models to denoise and recover traditional
DAS data [4]–[9], to weighting the DAS image with a cor-
rection factor [10]–[14], to replacing the coherent beamsum
altogether with a nonlinear image formation method [15]–
[20]. The output images for different image formation methods
do not necessarily have the same units as DAS; for instance,
short-lag spatial coherence [17] produces images in units of
correlation that are closer in appearance to the displayed (com-
pressed) B-mode image. It is therefore important to standardize
evaluation methods for new algorithm development.

Imaging algorithm development relies heavily on quanti-
tative metrics because they allow different methods to be
compared directly in specific imaging tasks. The superiority of
a new method is often established by demonstrating improved
performance across a panel of metrics in simulation, phantom,
and in vivo studies. When the ground truth is known, metrics
can measure the error directly (e.g., blood velocity, tissue
stiffness, cardiac ejection fraction, and the size of a structure).
There are also numerous tasks in which the ground truth is
unknown or does not exist, where the aim is instead simply
to minimize or maximize the metric. Examples include the
speckle signal-to-noise ratio (sSNR), lesion conspicuity, and
imaging resolution. However, these metrics are often heavily
influenced by the types of transformations used to visualize
ultrasound images, making it unclear whether the metrics
convey a useful comparison between two imaging methods
with different units [21]. A quantitative metric was recently
proposed for comparing imaging methods with different units
in the task of lesion detectability [22], representing an impor-
tant step toward achieving fair comparisons of image quality.
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In the absence of additional transform-independent metrics for
a wider range of tasks, a standardized methodology for visual
evaluation takes on greater importance.

Here, we describe a method for separating the evaluation
of displayed dynamic range and information content in an
image, enabling normalized comparisons between image for-
mation methods. In Section II, we review some common
quantitative tools for image analysis and motivate the need
for visual assessments. In Section III, we present histogram
matching as a tool for fair image comparison and describe
several realizations useful for different tasks. In Section IV,
we demonstrate the application of this tool to compare several
example imaging methods that could otherwise be subject
to evaluation bias. In Section V, we highlight the potential
pitfalls of this approach and discuss its impact on qualitative
assessments.

II. BACKGROUND

A. Common Quantitative Metrics

We begin with a survey of common quantitative metrics.
Some metrics simply describe image features, while others
have deeper statistical interpretations.

1) Texture Smoothness: The characteristics of an image
texture are assessed using the sSNR that is defined as

sSNR = μ

σ
(1)

where μ and σ are the mean and standard deviation of bright-
ness values within a region. When computed on uncompressed
B-mode images from diffusely scattering targets (i.e., fully
developed speckle), the image values are Rayleigh-distributed
and sSNR ≈ 1.9 [23]. Higher values of sSNR indicate
smoother speckle texture.

2) Lesion Contrast: The contrast between two image regions
is quantified using the contrast difference (CD) or contrast
ratio (CR)

CD = μ1 − μ2 (2)

CR = μ1

μ2
(3)

where μi is the mean value in region i . CD has units of the
underlying image, whereas CR is dimensionless. CD is often
used to compare log compressed images that are already in
relative units (e.g., decibels), in which case it is identical to
the CR of the uncompressed images expressed in the same
units.

3) Lesion Detectability: The contrast-to-noise ratio (CNR)
[24] is measured as

CNR = μ1 − μ2√
σ 2

1 + σ 2
2

. (4)

The CNR describes how visually distinguishable two regions
are, combining both contrast and texture variance into one
measure. In addition, it has been found that target detectability
is related to texture size (i.e., targets are more detectable
within finer texture). When computed on raw B-mode images
of diffusely scattering targets (i.e., fully developed speckle),

TABLE I
IMAGE METRICS PRESERVED BY TRANSFORMATIONS

the CNR, including this resolution term, represents the ideal
observer in the task of lesion detection [25], [26].

The generalized CNR (gCNR) between two image regions
is computed as the overlap between their histograms

gCNR = 1 −
∫ ∞

−∞
min{ f (x)g(x)} dx (5)

where f and g are the normalized histograms of two image
regions. Unlike CNR, the gCNR provides a nonparametric
measure of lesion detectability that is invariant to dynamic
range transformations [22]. The gCNR is related to the mini-
mum probability of error by the ideal classification algorithm;
higher gCNR indicates a smaller probability of error.

4) Other Metrics: Many quantitative metrics exist for other
imaging tasks as well. For instance, in a linear imaging system,
the full-width at half-maximum (FWHM) of a point target
describes the system resolution, whereas the sidelobes of the
point spread function describe the level and spatial extent
of energy that is expected to produce off-axis scattering.
Cystic resolution represents this spatial distribution of the
point spread function by predicting target detectability as a
function of lesion radius [27] and signal-to-noise ratio [28].
Contrast linearity [21], [29] has been proposed as a way to
describe the accuracy of an imaging method in representing
the native target contrast relative to the background irrespective
of global transformations.

B. Impact of Dynamic Range Transformations

Quantitative metrics are often computed on the uncom-
pressed B-Mode images, while the displayed images have
typically undergone dynamic range compression, a type of
monotonic transformation. However, most of the aforemen-
tioned metrics are not preserved under general monotonic
transformations. Table I shows a list of several of these metrics
and their theoretical properties under scaling, shifting, affine,
and monotonic operations on an image with pixel values x .
Among these, only the gCNR is preserved under all monotonic
transformations.

Furthermore, the ranking of imaging methods from best
to worst based on these metrics is generally not preserved
under monotonic transformations. An imaging method that is
quantitatively superior to raw images may be worse when the
images have been compressed. Consequently, there may be
a mismatch in quantitative metrics computed on raw images
versus the actual displayed images. Fig. 1 shows a simple
example of how the CD values and rankings are affected
by a simple dynamic range transformation. Note that this
effect is exacerbated when image formation or postprocessing
applies a different effective transformation to each image. For
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Fig. 1. Simple example of how a monotonic transformation can affect
contrast. Let µA1

and µA2
denote the mean values of image A in regions

1 and 2, shown plotted on a real number line. The CD of method A is
µA1

− µA2
, i.e., the distance between the points. (a) Before monotonic

transformation, A has greater contrast than B. (b) After monotonic
transformation, B has greater contrast than A. Not only are the contrasts
not preserved for A and B, the relative ranking of A and B contrast is not
preserved.

example, it is difficult to compare a log-compressed DAS
image produced in a research lab to a commercial scanner
image using an unknown compression and contrast-enhancing
grayscale transformation.

C. Normalized Image Quality Evaluation

These observations strongly motivate the need to evaluate
images in the domains of their respective target applications.
While quantitative metrics on raw images may be appropriate
for applications such as computer-aided diagnosis or ideal
observer analysis, imaging applications intended for human
observers should also be evaluated using the displayed images.
Clinical reader assessments are a common tool for evaluating
the diagnostic value of new methods, often in the context of a
particular clinical task. In cases when extensive reader studies
are not feasible, simple quantitative metrics are needed to
identify promising methods. However, dynamic range transfor-
mations can have a significant influence on quantitative metrics
and may break the assumptions made by ideal observers
[21], [22]. Whether the visual assessment is performed by
clinical readers or quantitative metrics, we require a robust
and rigorous methodology for comparing new methods.

We propose the use of histogram matching to overcome the
bias introduced by dynamic range transformations. Histogram
matching is a family of techniques to ensure that two or more
images are properly normalized for presentation [30]. This tool
is often used in photography to compensate for the transfer
function of an imaging sensor or varying lighting conditions.
In the following, we describe the application of this tool to
ultrasound images and its impact on common imaging tasks,
including quantitative assessment.

III. METHODS

In the following, we present histogram matching for image
normalization. In all cases, we consider an input image X
and a reference image Y . The goal is to find a transformation
of X that best matches Y . As we will show, the choice
of transformation has a significant impact on the resulting
perception and image quality metrics.

A. Partial Histogram Matching

The simplest transformations for histogram matching are the
scaling and shifting operations

Xscale = a X (6)

Xshift = X + b. (7)

These operations transform the histogram of X . Scaling affects
the dynamic range of the image, whereas shifting the mean
affects the overall brightness of the image. When combined,
the resulting operation is referred to as an affine transforma-
tion, i.e., Xaffine = a X + b.

Histogram matching with affine transformations seeks a and
b that make the transformed image a X + b most similar to Y .
In this work, we choose a and b that match the mean μ and
variance σ 2 of X to that of Y

a = σY

σX
(8)

b = μY − aμX . (9)

This mean and variance matching method is easy to compute
because it relies on simple descriptive statistics and has the
effect of maximizing the luminance and contrast terms of the
structural similarity (SSIM) [31], a popular visual similarity
metric for comparing images. For the same reason, it is
somewhat robust to outliers in the distribution. Note that this
method will only perfectly match two distributions that vary by
at most these two moments, such as two images from Rayleigh
distributions or Gaussian distributions or two images differing
by a linear transformation. An alternative matching scheme is
to minimize the L2 norm

min
a,b∈R

‖a X + b − Y‖2 (10)

which as derived in the Appendix and produces the weights

a = σ 2
XY

σ 2
X

(11)

b = μY − aμX (12)

where σ 2
XY is the covariance of X and Y . It should be noted

that other functions, such as the L1 norm, can also be used
for optimization but may not have a closed-form solution for
the affine coefficients.

Partial histogram matching fails to match the overall appear-
ance of two images when their distributions significantly differ
in shape (e.g., significant differences in higher order moments
such as skew and kurtosis). This also includes mixtures of
distributions where the statistics of the overall data may be
matched, while the component distributions may not be.

B. Full Histogram Matching

For distributions not fully matched by the partial method,
closer histogram matching can be achieved by considering
a wider class of image transformations, whereas partial his-
togram matching was restricted to the class of affine trans-
formations, “full” histogram matching seeks any monotonic
transformation that best matches the input probability density
function (pdf) to the reference pdf. Unlike in the partial case,
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full histogram matching seeks to completely match the target
distribution to the reference.

In practice, full histogram matching is accomplished by
finding the mapping h from the input cumulative distribution
function (CDF) FX to the reference CDF FY [32], [33]

h[i ] = j such that FX [i ] = FY [ j ] (13)

for discretely binned data. Interpolation is used between the
bins to most closely match the overall distribution. The map-
ping function is then applied to the target distribution using
interpolation to map individual pixel values

Xfull = h(X). (14)

The result should be that the target histogram matches closely
with the reference histogram, depending on the resolution of
binning.

C. Variations of Histogram Matching

There are important considerations for histogram matching.
1) Binning: The limit of the binning process is to use

individual pixels (1 pixel/bin). This “point” match can be
simplified to rank-ordering the pixels of each image using a
direct one-to-one mapping to replace the target pixel values.
This process will exactly match the reference distribution but
is particularly susceptible to outliers in the reference data since
all values are replicated in the target.

2) Clipping: Ultrasound data are commonly clipped for
display by truncating the lower and/or upper range of the
pixel values. For example, in a log-compressed B-mode image,
the lower end of the distribution extends as far as the noise
floor of the system allows—well beyond useful information
content. Clipping values lower than some threshold place the
center of the distribution closer to the middle of the displayed
dynamic range. In the above mean and variance matching, it is
essential to operate on the whole image distribution (without
clipping) so that the calculated statistics best represent the
underlying data. This is not required for the full histogram
matching approach, where the same percentage of the distri-
bution will simply be mapped to the clipped value. For the
case of matching a new image to a “black-box” image, with
access only to the display data with clipping applied, a full
histogram matching approach may therefore be preferable.

3) ROI-Based Histogram Matching: If the reference image
has extreme values (e.g., bright points or dark lesions),
histogram matching would alter the entire target image to
compensate. In these cases, it may be useful to determine a
transformation based on only a particular region of interest
(ROI) and then to apply that transformation to the whole
image. For example, a homogeneous speckle ROI within the
image is expected to have a well-behaved distribution (log-
Rayleigh for a log-compressed B-mode image). Histogram
matching based on this ROI should produce a well-matched
background “look and feel” to the images. Differences in other
structures, such as noise and acoustic clutter within hypoechoic
lesions, can then be assessed between the images. Alterna-
tively, images could be matched to an analytical or reference
distribution if a homogeneous ROI cannot be identified. When

using an ROI, it may be possible that the full image contains
pixel values outside the range of those in the ROI and therefore
outside the mapping function. These values can be clipped to
the mapping range or we may employ linear extension of the
mapping function to try to preserve the full dynamic range of
the original target data. For example, a point target may have
a brighter value than is present in the ROI speckle background
and requires extrapolation to remain brighter in the matched
image.

The abovementioned methods describe global dynamic
range transformations and are the main focus of this work.
Spatially adaptive matches are also possible by calculating
the mapping function separately for multiple ROIs [34], but
we will consider these to be more as image postprocessing
methods since they actually change the spatial information
content of the image.

D. Test Cases for Evaluation

Sample data were acquired using the Verasonics Vantage
256 (Verasonics Inc., Kirkland, WA, USA) using the P4-2v
phased array transducer. Channel data were stored for indi-
vidual element transmissions with center frequency 4.5 MHz
for each element on the array. Synthetic aperture focusing was
applied to coherently sum together the transmissions from all
elements at each point in the image [35]. The ATS 549 general
and small parts phantom (CIRS Inc., Norfolk, VA, USA) was
imaged to visualize speckle background, contrast lesion targets
(−15 and −6 dB), and point targets.

To illustrate the impact of histogram matching across a wide
spectrum of signal and image processing, we selected four
representative imaging methods.

1) Conventional B-Mode: Image formation by summation
of the focused receive channel data, envelope detection
(using the Hilbert transform), and log compression. This
is the baseline case to compare against.

2) Square Law Detector: Similar to conventional B-mode
but envelope detection is performed by squaring the RF
signal and low pass filtering, resulting in values approx-
imately squared compared to the conventional B-mode
(or doubled after log compression). This represents a
case with little to no change in underlying information
and only a simple (linear) dynamic range alteration.

3) Receive Compounded: Incoherent spatial compounding,
used to reduce speckle texture, by applying envelope
detection to each receive channel individually before
summation and log compression [36]. This represents
a case of a true change in underlying information while
retaining a similar but reduced dynamic range.

4) Short-Lag Spatial Coherence (SLSC): Image formation
by averaging of complex cross correlation of receive
channel signals up to ten elements apart after synthetic
focusing [37], [38]. Unlike the abovementioned methods
that are shown on a logarithmic scale, SLSC images
are typically displayed on a linear scale between [0, 1].
This represents a case of a true change in underlying
information and image display units (i.e., based on
correlation instead of signal amplitude).
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TABLE II
FWHM RESOLUTION (MILLIMETERS) FOR POINT TARGETS IN FIG. 5

Histogram matching was performed using 256 bins in all cases.
The partial histogram matching method was implemented
using the mean and variance matching of (8) and (9).

In order to make the histogram matching methods
used in this work accessible to others in the
imaging community, a MATLAB implementation and
sample phantom data have been made available at
ht.tps://github..com/nbottenus./histogram_matching (DOI:
10.5281/zenodo.4124190).

IV. RESULTS

As a tool for fair qualitative image comparison, histogram
matching is perhaps best evaluated by showing the images
themselves for the various processed data sets. Fig. 2 shows
the performance and characteristics of the partial and full
histogram matching techniques both when applied based on
the entire image and based on only a speckle ROI in the
middle of the image. All matched images are shown on the
same dynamic range. For the cases that determined a histogram
transfer function based on the ROI, any values outside the
range of the transfer function were calculated using linear
extrapolation.

The original images show very different image charac-
teristics. Compared with the conventional B-mode image,
the square law image shows a darker background texture
and finer point targets that stand out from the background.
This appearance would fool both qualitative and quantitative
assessments to say that resolution and contrast have improved.
Spatial compounding shows the opposite effect, reducing
texture especially within the darker lesion but with a haze over
the image and reduced prominence of the point targets. SLSC,
displayed on a linear scale rather than logarithmic, shows
a bright background with high texture variance but extreme
contrast of the lesions. SLSC also uniquely shows a small
defect in the imaging phantom around 30 mm depth as a dark
band, representing low spatial coherence.

The histograms for these images are shown in Fig. 3. The
bottom of Fig. 3 shows the raw data as it was clipped and
normalized for display, truncating the square law image’s dis-
tribution and showing how the logarithmic images compare to
the linear SLSC image. The clipping of the square law image
produces the appearance of the point targets against a black
background rather than showing any of the background texture.
The spatially compounded image shows a compressed lower
range, raising the image mean and creating the apparent haze.
This compression potentially biases an observer to believe that
lesion detectability has been reduced despite an accompanying
smoothing of the background texture. The SLSC image shows
the widest range including clipping on the low end, explaining
the extreme appearance of the texture in the image and the dark

Fig. 2. Top row: original images for four image formation methods—
conventional B-mode, square-law detector, receive spatial compounding,
and SLSC. SLSC is shown on a linear scale, whereas the others
are shown on a logarithmic scale (dB). Bottom rows: images after
partial or full histogram matching, using either the full image or a speckle
ROI (indicated by white dashed box). All matched images are shown on
the same logarithmic scale.

lesion. This stretching of the dynamic range potentially biases
visual comparisons against the B-mode image to conclude that
the lesion detectability has improved despite an accompanying
increase in the background texture variance.
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Fig. 3. Histograms for the original images (top) using raw image data
values (logarithmic except for the linearly scaled SLSC image) and
(bottom) after clipping of data to the displayed −60-dB dynamic range
of the B-mode in Fig. 2. The SLSC image, normally displayed on a
linear scale from 0 to 1, has been normalized to the displayed range
for comparison. Asterisks indicate that the histogram extends past the
displayed Y -axis.

Fig. 4. Results of the proposed histogram matching strategies corre-
sponding to Fig. 2 evaluated for (left) the entire image and (right) the
speckle ROI only. Asterisks indicate that the histogram extends past the
displayed Y -axis. All histograms are shown with pixel value from [−70
10], although the histograms may extend further.

Fig. 4 shows the image histograms after the proposed his-
togram matching strategies were applied. For each, histograms
are shown for the entire image and only the homogeneous
speckle ROI identified in the images. In the original B-mode
image, the background speckle region appears as a well-
defined log-Rayleigh distribution as expected. In all matching
cases, the square law data are almost exactly matched to
the conventional B-mode. After partial matching, all four
histograms have much more overlap. However, the differing
shapes of the overall distributions for spatial compounding and

Fig. 5. Four image formation methods compared in each plot for each
matching method corresponding to Fig. 2. For the original images, SLSC
is shown on a scale from 0 to 1. Left: point target located at (−1, 84) mm,
normalized to the maximum brightness. Right: contrast lesion targets
located at 50 mm depth, normalized to the maximum brightness. Lesion
targets, nominally −15 and −6 dB, are approximately marked by black
dashed lines in the bottom-right plot.

Fig. 6. Image metrics calculated for the four image formation methods
across matching methods for a −15-dB lesion and speckle background.
Metrics are calculated using clipped and normalized image data as in the
bottom of Fig. 3. Contrast is represented as 1 − CR such that a higher
bar represents better contrast.

SLSC result in differing means and variances for the speckle
background. Conversely, partial matching of the distributions
within the speckle ROI leaves large differences in the overall
image. The square law data after logarithmic compression are
approximately a linear transform of the B-mode data and is
therefore matched by the partial (affine) technique for both the
entire image and ROI. More complicated transforms, including
nonlinear grayscale transforms such as sigmoidal compression
for contrast enhancement [22], [39], require full matching.
Full histogram matching, as expected, produces near-perfect
overlap for the entire image and speckle background when
referencing the entire image and ROI, respectively. Matching
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the entire image leaves differences in the mean of the speckle
background similar to the partial method, but the shapes of
the distributions are more similar. Matching the speckle ROI
leaves differences in the entire image, most notably in the low
end of the SLSC image as it is stretched out to match the
reference.

As discussed previously, imaging algorithms are often eval-
uated using point and lesion targets. These targets are shown
in cross section before and after image matching in Fig. 5.
The measured FWHM (−6 dB for logarithmic images and
0.5 amplitude for linear images) for each case is given in
Table II. Lesion targets were averaged over a 2-mm axial
region to reduce noise. It is evident that without image match-
ing, the interpretation of these two targets is easily distorted by
the original image display choices. For example, the square-
law detector shows both the best resolution and lesion contrast
(at the expense of texture variance, only somewhat evident
from these plots due to axial averaging). The reduced dynamic
range of the spatial compounding method would make it seem
the worst for both targets. However, after applying different
matching schemes, the apparent performance of the image
formation methods varies drastically. After partial matching
based on the speckle ROI, spatial compounding appears to
have the best resolution and lowest sidelobes while performing
comparably to the other methods in the lesion. It is evident
that the center of the point target in SLSC becomes distorted
under full histogram matching.

Four common image metrics used to evaluate imaging
algorithms—sSNR, CR, CNR, and gCNR—are shown in
Fig. 6 under the different matching strategies. Before match-
ing, the speckle texture in the ROI (reflected by sSNR) is
the smoothest in the spatially compounded image and most
variable in the square law image. Note that partial matching
by design matches the sSNR (μ/σ ) of the chosen ROI exactly.
After matching the whole image, compounding was observed
to still produce the smoothest speckle texture, whereas the
other images were comparable. Lesion metrics were computed
for the −15-dB lesion relative to the speckle ROI. The contrast
in the original square law image was greatly exaggerated
due to the stretched dynamic range. After matching, SLSC
produced the greatest contrast (expressed as 1 − C R), while
spatial compounding showed varying contrast depending on
matching strategy. CNR was invariant to partial matching,
as described in Table I with the exception of the square
law image due to clipping. The difference in CNR between
compounding and SLSC remained even after full matching
but was slightly reduced. The gCNR was invariant to image
matching, as described in Table I with the exception of the
square law image due to clipping.

V. DISCUSSION

Histogram matching provides a systematic approach for
placing different imaging methods on a level playing field
for visual evaluation. We have presented several variations,
providing control over the matching transformation (partial
versus full) and the matching region (local ROI versus whole
image); one can further vary the matching objective function
(mean and variance matching versus L2) and compensation

for dynamic range clipping. As shown in Fig. 2, histogram
matching gives seemingly disparate imaging methods a
similar appearance and reverses applied dynamic range
transformations.

We expect that the most common use will be full his-
togram matching to a reference B-mode image using a homo-
geneous speckle ROI. B-mode speckle represents a known
distribution that contains most of the echogenicity values
expected in a typical clinical image and should enable a
well-behaved transformation function between distributions
of differing shapes. Image interpretation is then performed,
knowing that the speckle texture has been matched so that
differences can be identified in target structures such as
lesions. However, it should be recognized that point targets
and anechoic structures may fall outside this distribution
and are therefore limited by the chosen extrapolation of the
histogram matching function. Partial matching may be more
appropriate in circumstances where the structure is included
in the matching ROI or other situations where the overall
shape of the histogram should be preserved. The method of
matching should be clearly stated and justified to allow for
appropriate interpretation of images. In some cases, it may
be desirable to derive a different matching condition than
presented here. For example, while the mean and variance
affine match preserves sSNR, it is also possible to derive a
transform that preserves lesion contrast that would highlight
differences in the background texture.

There is not a universal “ideal” distribution for image
matching. The structural content and, therefore, histograms of
different clinical images vary widely between the targets. For
example, the liver appears as a largely homogeneous speckle,
whereas the heart contains both brightly scattering tissue
and low-scattering blood volume. Clinical imaging systems
provide application-specific presets, which employ nonlinear
grayscale transfer curves that monotonically transform the
displayed dynamic range to highlight structures of interest,
maximize contrast between targets, and reject noise. These
adjustments, and therefore, the ideal distribution for histogram
matching vary widely based on imaging target and task.

The direction of image matching must also be selected with
care. In Fig. 2, all images were matched to the compressed
B-mode image. This is a natural choice for evaluating novel
images in clinical settings where conventional B-mode is
familiar. However, a goal of many novel imaging approaches
is to detect features that are not visible in the B-mode image;
features such as hypoechoic targets obscured by acoustic
clutter may not be well-captured by the B-mode dynamic range
and consequently may be lost during image matching. In these
cases, it may be beneficial to perform matching in the other
direction, i.e., the conventional B-mode to the novel image.
This is especially important when images are clipped for
display and novel information may be lost below a threshold
that was selected to minimize noise in the original image.
In the case of task-based metrics, improved performance
across multiple metrics after matching in both directions could
provide compelling evidence of superiority (note that for
transform-invariant metrics such as the gCNR, both directions
are equivalent).
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The histogram bins must be selected so as to allow proper
observation of the dynamics of both histograms in order
to enable an accurate mapping from one to the other. For
instance, raw B-mode images will have a greater concentration
of values near zero due to their high dynamic range, in which
case the bins should be selected either on a logarithmic
scale or after an appropriate dynamic range compression. It is
also possible that quantization of the histogram bins may
introduce some slight inconsistencies in the image. For the
data in this study, we found that 256 bins achieved consistent
matching results, although fewer bins may be sufficient.

Evaluation, quantitative or qualitative, is best done on
matched images at a stage that isolates the desired comparison.
For example, comparison of beamformers as in this article
may best be performed on images formed before additional
postprocessing. Similarly, image postprocessing should be
assessed based on the same input data where possible. The
interaction of each beamformer with a given postprocess-
ing method, such as an adaptive speckle reduction or edge
enhancement, may vary, compounding the difficulty of inter-
pretation if assessed together (although assessment with post-
processing may ultimately be required for practical application
[40]). Special attention should be paid to beamforming with
neural networks [20] where a trained network may include
some effective image postprocessing not separable from the
beamforming step. The histogram matching process is funda-
mentally the same in all cases, although the ROI to match may
change based on the selected evaluation task.

Figs. 5 and 6 confirm the volatility of sSNR, lesion contrast,
point target FWHM, and CNR under different dynamic range
transformations. In particular, FWHM is easily confounded
by image formation and processing. The rescaling of pixel
values in the image can create an apparent change in resolution
without reflecting the underlying information content of the
data. Sparrow’s criterion [41], which measures the spacing at
which two points form a flat plateau, is an alternative mea-
sure that unaffected by such dynamic range transformations.
However, it still does not capture the full spatial distribution
of energy in the tails of the point spread function and is
more difficult to experimentally realize. These sensitivities
underscore the critical need for a holistic view of image
quality that combines task-based evaluation metrics with visual
inspections and expert assessments. Histogram matching is
a tool to minimize unintentional biases inherent to different
imaging methods and represents one step toward achieving
this goal.

VI. CONCLUSION

We have presented a methodology for the fair visual com-
parison of different ultrasound imaging techniques. Histogram
matching provides a systematic approach for minimizing the
visual differences between two images according to their
histograms and is meant to complement existing quantita-
tive metrics. We have demonstrated partial (affine) and full
(monotonic) histogram matching methods based on ROI and
whole-image comparisons and showed their effects on visu-
alization as well as on traditional image metrics. Histogram

matching is an integral tool for a comprehensive evaluation of
imaging methods.

APPENDIX

A. L2 Affine Matching

The L2 affine histogram match can be posed as minimizing
the two-norm of the difference between ax + b and y

J = ‖ax + b1 − y‖2
2 (15)

= (ax + b1 − y)T (ax + b1 − y) (16)

= a2xT x + b2 N + yT y + 2abNμx − 2axT y − 2bNμy

(17)

noting that 1T 1 = N , xT 1 = Nμx , and yT 1 = Nμy . The
partial derivative with respect to a is equal to zero when

∂ J

∂a
= 0 = 2axT x + 2bNμx − 2xT y (18)

a = xT y − bNμx

xT x
(19)

and the partial derivative with respect to b is equal to zero
when

∂ J

∂b
= 0 = 2bN + 2a Nμx − 2Nμy (20)

b = μy − aμx. (21)

Plug (21) into (19)

a = xT y − (μy − aμx)Nμx

xT x
(22)

a = xT y − Nμxμy

xT x − Nμxμx
(23)

a = σ 2
xy

σ 2
x

, (24)

where σ 2
xy is the covariance of x and y and σ 2

x is the variance
of x.
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